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T

PREFACE.

HIS book is intended to form a companion volume to my edition of the treatise of Apollonius on Conic Sections lately
published. If it was worth while to attempt to make the work of “the great geometer” accessible to the mathematician of to-

day who might not be able, in consequence of its length and of its form, either to read it in the original Greek or in a Latin
translation, or, having read it, to master it and grasp the whole scheme of the treatise, I feel that I owe even less of an apology
for offering to the public a reproduction, on the same lines, of the extant works of perhaps the greatest mathematical genius that
the world has ever seen.

Michel Chasles has drawn an instimctive distinction between the predominant features of the geometry of Archimedes and
of the geometry which we find so highly developed in Apollonius. Their works may be regarded, says Chasles, as the origin
and basis of two great inquiries which seem to share between them the domain of geometry. Apollonius is concerned with the
Geometry of Forms and Situations, while in Archimedes we find the Geometry of Measurements dealing with the quadrature
of curvilinear plane figures and with the quadrature and cubature of curved surfaces, investigations which “gave birth to the
calculus of the infinite conceived and brought to perfection successively by Kepler, Cavalieri, Fermat, Leibniz, and Newton.”
But whether Archimedes is viewed as the man who, with the limited means at his disposal, nevertheless succeeded in
performing what are really integrations for the purpose of finding the area of a parabolic segment and a spiral, the surface and
volume of a sphere and a segment of a sphere, and the volume of any segments of the solids of revolution of the second degree,
whether he is seen finding the centre of gravity of a parabolic segment, calculating arithmetical approximations to the value of
π, inventing a system for expressing in words any number up to that which we should write down with 1 followed by 80,000
billion ciphers, or inventing the whole science of hydrostatics and at the same time carrying it so far as to give a most complete
investigation of the positions of rest and stability of a right segment of a paraboloid of revolution floating in a fluid, the
intelligent reader cannot fail to be struck by the remarkable range of subjects and the mastery of treatment. And if these are such
as to create genuine enthusiasm in the student of Archimedes, the style and method are no less irresistibly attractive. One
feature which will probably most impress the mathematician accustomed to the rapidity and directness secured by the
generality of modem methods is the deliberation with which Archimedes approaches the solution of any one of his main
problems. Yet this very characteristic, with its incidental effects, is calculated to excite the more admiration because the
method suggests the tactics of some great strategist who foresees everything, eliminates everything not immediately conducive
to the execution of his plan, masters every position in its order, and then suddenly (when the very elaboration of the scheme has
almost obscured, in the mind of the spectator, its ultimate object) strikes the final blow. Thus we read in Archimedes
proposition after proposition the bearing of which is not immediately obvious but which we find infallibly used later on; and
we are led on by such easy stages that the difficulty of the original problem, as presented at the outset, is scarcely appreciated.
As Plutarch says, “it is not possible to find in geometry more difficult and troublesome questions, or more simple and lucid
explanations.” But it is decidedly a rhetorical exaggeration when Plutarch goes on to say that we are deceived by the easiness
of the successive steps into the belief that anyone could have discovered them for himself. On the contrary, the studied
simplicity and the perfect finish of the treatises involve at the same time an element of mystery. Though each step depends upon
the preceding ones, we are left in the dark as to how they were suggested to Archimedes. There is, in fact, much truth in a
remark of Wallis to the effect that he seems “as it were of set purpose to have covered up the traces of his investigation as if he
had grudged posterity the secret of his method of inquiry while he wished to extort from them assent to his results.” Wallis
adds with equal reason that not only Archimedes but nearly all the ancients so hid away from posterity their method of Analysis
(though it is certain that they had one) that more modem mathematicians found it easier to invent a new Analysis than to seek
out the old. This is no doubt the reason why Archimedes and other Greek geometers have received so little attention during the
present century and why Archimedes is for the most part only vaguely remembered as the inventor of a screw, while even
mathematicians scarcely know him except as the discoverer of the principle in hydrostatics which bears his name. It is only of
recent years that we have had a satisfactory edition of the Greek text, that of Heiberg brought out in 1880-1, and I know of no
complete translation since the German one of Nizze, published in 1824, which is now out of print and so rare that I had some
difficulty in procuring a copy.

The plan of this work is then the same as that which I followed in editing the Conics of Apollonius. In this case, however,
there has been less need as well as less opportunity for compression, and it has been possible to retain the numbering of the
propositions and to enunciate them in a manner more nearly approaching the original without thereby making the enunciations
obscure. Moreover, the subject matter is not so complicated as to necessitate absolute uniformity in the notation used (which is
the only means whereby Apollonius can be made even tolerably readable), though I have tried to secure as much uniformity as
was fairly possible. My main object has been to present a perfectly faithful reproduction of the treatises as they have come
down to us, neither adding anything nor leaving out anything essential or important. The notes are for the most part intended to
throw light on particular points in the text or to supply proofs of propositions assumed by Archimedes as known; sometimes I
have thought it right to insert within square brackets after certain propositions, and in the same type, notes designed to bring out



the exact significance of those propositions, in cases where to place such notes in the Introduction or at the bottom of the page
might lead to their being overlooked.

Much of the Introduction is, as will be seen, historical; the rest is devoted partly to giving a more general view of certain
methods employed by Archimedes and of their mathematical significance than would be possible in notes to separate
propositions, and partly to the discussion of certain questions arising out of the subject matter upon which we have no positive
historical data to guide us. In these latter cases, where it is necessary to put forward hypotheses for the purpose of explaining
obscure points, I have been careful to call attention to their speculative character, though I have given the historical evidence
where such can be quoted in support of a particular hypothesis, my object being to place side by side the authentic information
which we possess and the inferences which have been or may be drawn from it, in order that the reader may be in a position to
judge for himself how far he can accept the latter as probable. Perhaps I may be thought to owe an apology for the length of one
chapter on the so-called vevaets, or inclinationes, which goes somewhat beyond what is necessary for the elucidation of
Archimedes; but the subject is interesting, and I thought it well to make my account of it as complete as possible in order to
round off, as it were, my studies in Apollonius and Archimedes.

I have had one disappointment in preparing this book for the press. I was particularly anxious to place on or opposite the
title-page a portrait of Archimedes, and I was encouraged in this idea by the fact that the title-page of Torelli’s edition bears a
representation in medallion form on which are endorsed the words Archimedis effigies marmorea in veteri anaglypho Romae
asservato. Caution was however suggested when I found two more portraits wholly unlike this but still claiming to represent
Archimedes, one of them appearing at the beginning of Peyrard’s French translation of 1807, and the other in Gronovius’
Thesaurus Graecarum Antiquitatum; and I thought it well to inquire further into the matter. I am now informed by Dr A. S.
Murray of the British Museum that there does not appear to be any authority for any one of the three, and that writers on
iconography apparently do not recognise an Archimedes among existing portraits. I was, therefore, reluctantly obliged to give
up my idea.

The proof sheets have, as on the former occasion, been read over by my brother, Dr R. S. Heath, Principal of Mason
College, Birmingham; and I desire to take this opportunity of thanking him for undertaking what might well have seemed, to any
one less genuinely interested in Greek geometry, a thankless task.

T. L. HEATH.
March, 1897.
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INTRODUCTION.

CHAPTER I.

ARCHIMEDES.

A LIFE of Archimedes was written by one Heracleides*, but this biography has not survived, and such particulars as are
known have to be collected from many various sources†. According to Tzetzes‡ he died at the age of 75, and, as he perished in
the sack of Syracuse (B.C. 212), it follows that he was probably born about 287 B.C. He was the son of Pheidias the
astronomer§, and was on intimate terms with, if not related to, king Hieron and his son Gelon. It appears from a passage of
Diodorus* that he spent a considerable time at Alexandria, where it may be inferred that he studied with the successors of
Euclid. It may have been at Alexandria that he made the acquaintance of Conon of Samos (for whom he had the highest regard
both as a mathematician and as a personal friend) and of Eratosthenes. To the former he was in the habit of communicating his
discoveries before their publication, and it is to the latter that the famous Cattle-problem purports to have been sent. Another
friend, to whom he dedicated several of his works, was Dositheus of Pelusium, a pupil of Conon, presumably at Alexandria
though at a date subsequent to Archimedes’ sojourn there.

After his return to Syracuse he lived a life entirely devoted to mathematical research. Incidentally he made himself famous
by a variety of ingenious mechanical inventions. These things were however merely the “diversions of geometry at play †,” and
he attached no importance to them. In the words of Plutarch, “he possessed so high a spirit, so profound a soul, and such
treasures of scientific knowledge that, though these inventions had obtained for him the renown of more than human sagacity, he
yet would not deign to leave behind him any written work on such subjects, but, regarding as ignoble and sordid the business of
mechanics and every sort of art which is directed to use and profit, he placed his whole ambition in those speculations in
whose beauty and subtlety there is no admixture of the common needs of life‡.” In fact he wrote only one such mechanical
book, On Sphere-making§, to which allusion will be made later.

Some of his mechanical inventions were used with great effect against the Romans during the siege of Syracuse. Thus he
contrived catapults so ingeniously constructed as to be equally serviceable at long or short ranges, machines for discharging
showers of missiles through holes made in the walls, and others consisting of long moveable poles projecting beyond the walls
which either dropped heavy weights upon the enemy’s ships, or grappled the prows by means of an iron hand or a beak like
that of a crane, then lifted them into the air and let them fall again*. Marcellus is said to have derided his own engineers and
artificers with the words, “Shall we not make an end of fighting against this geometrical Briareus who, sitting at ease by the
sea, plays pitch and toss with our ships to our confusion, and by the multitude of missiles that he hurls at us outdoes the
hundred-handed giants of mythology?†”; but the exhortation had no effect, the Romans being in such abject terror that “if they
did but see a piece of rope or wood projecting above the wall, they would cry ‘there it is again/ declaring that Archimedes
was setting some engine in motion against them, and would turn their backs and run away, insomuch that Marcellus desisted
from all conflicts and assaults, putting all his hope in a long siege ‡.”

If we are rightly informed, Archimedes died, as he had lived, absorbed in mathematical contemplation. The accounts of the
exact circumstances of his death differ in some details. Thus Livy says simply that, amid the scenes of confusion that followed
the capture of Syracuse, he was found intent on some figures which he had drawn in the dust, and was killed by a soldier who
did not know who he was §. Plutarch gives more than one version in the following passage. “Marcellus was most of all
afflicted at the death of Archimedes; for, as fate would have it, he was intent on working out some problem with a diagram and,
having fixed his mind and his eyes alike on his investigation, he never noticed the incursion of the Romans nor the capture of
the city. And when a soldier came up to him suddenly and bade him follow to Marcellus, he refused to do so until he had
worked out his problem to a demonstration; whereat the soldier was so enraged that he drew his sword and slew him. Others
say that the Roman ran up to him with a drawn sword offering to kill him; and, when Archimedes saw him, he begged him
earnestly to wait a short time in order that he might not leave his problem incomplete and unsolved, but the other took no notice
and killed him. Again there is a third account to the effect that, as he was carrying to Marcellus some of his mathematical
instruments, sundials, spheres, and angles adjusted to the apparent size of the sun to the sight, some soldiers met him and, being
under the impression that he carried gold in the vessel, slew him*.” The most picturesque version of the story is perhaps that
which represents him as saying to a Roman soldier who came too close, “Stand away, fellow, from my diagram,” whereat the
man was so enraged that he killed him†. The addition made to this story by Zonaras, representing him as saying παρά κεραλάν
καί μή παρά γραμμάν, while it no doubt recalls the second version given by Plutarch, is perhaps the most far-fetched of the
touches put to the picture by later hands.

Archimedes is said to have requested his friends and relatives to place upon his tomb a representation of a cylinder
circumscribing a sphere within it, together with an inscription giving the ratio which the cylinder bears to the sphere‡; from



which we may infer that he himself regarded the discovery of this ratio [On the Sphere and Cylinder, I. 33, 34] as his greatest
achievement. Cicero, when quaestor in Sicily, found the tomb in a neglected state and restored it§.

Beyond the above particulars of the life of Archimedes, we have nothing left except a number of stories, which, though
perhaps not literally accurate, yet help us to a conception of the personality of the most original mathematician of antiquity
which we would not willingly have altered. Thus, in illustration of his entire preoccupation by his abstract studies, we are told
that he would forget all about his food and such necessities of life, and would be drawing geometrical figures in the ashes of
the fire, or, when anointing himself, in the oil on his body*. Of the same kind is the well-known story that, when he discovered
in a bath the solution of the question referred to him by Hieron as to whether a certain crown supposed to have been made of
gold did not in reality contain a certain proportion of silver, he ran naked through the street to his home shouting εύρηκα
εύρκα†.

According to Pappus ‡ it was in connexion with his discovery of the solution of the problem To move a given weight by a
given force that Archimedes uttered the famous saying, “Give me a place to stand on, and I can move the earth (δóς μοι πο  στ
 καί κιν  τήν γ ν).” Plutarch represents him as declaring to Hieron that any given weight could be moved by a given force,

and boasting, in reliance on the cogency of his demonstration, that, if he were given another earth, he would cross over to it and
move this one. “And when Hieron was struck with amazement and asked him to reduce the problem to practice and to give an
illustration of some great weight moved by a small force, he fixed upon a ship of burden with three masts from the king’s
arsenal which had only been drawn up with great labour and many men; and loading her with many passengers and a full
freight, sitting himself the while far off, with no great endeavour but only holding the end of a compound pulley (πολύσπατος)
quietly in his hand and pulling at it, he drew the ship along smoothly and safely as if she were moving through the sea§.”
According to Proclus the ship was one which Hieron had had made to send to king Ptolemy, and, when all the Syracusans with
their combined strength were unable to launch it, Archimedes contrived a mechanical device which enabled Hieron to move it
by himself, insomuch that the latter declared that “from that day forth Archimedes was to be believed in everything that he
might say∥.” While however it is thus established that Archimedes invented some mechanical contrivance for moving a large
ship and thus gave a practical illustration of his thesis, it is not certain whether the machine used was simply a compound
pulley (πολύπστος) as stated by Plutarch; for Athenaeus*, in describing the same incident, says that a helix was used. This term
must be supposed to refer to a machine similar to the κοχλίας described by Pappus, in which a cog-wheel with oblique teeth
moves on a cylindrical helix turned by a handle †. Pappus, however, describes it in connexion with the βαρονλκóς of Heron,
and, while he distinctly refers to Heron as his authority, he gives no hint that Archimedes invented either the βαρονλκóς or the
particular κοχλίας on the other hand, the πολύσπατος is mentioned by Galen ‡, and the τρίσπαστος (triple pulley) by
Oribasius§, as one of the inventions of Archimedes, the τρίνπαστος being so called either from its having three wheels
(Vitruvius) or three ropes (Oribasius). Nevertheless, it may well be that though the ship could easily be kept in motion, when
once started, by the τρισπαστος or πολύσπαστος, Archimedes was obliged to use an appliance similar to the κοχλίας to give
the first impulse.

The name of yet another instrument appears in connexion with the phrase about moving the earth. Tzetzes’ version is, “Give
me a place to stand on (τ  β ), and I will move the whole earth with a χαριστίων∥”; but, as in another passaged ¶ he uses the
word τρισπατος, it may be assumed that the two words represented one and the same thing**.

It will be convenient to mention in this place the other mechanical inventions of Archimedes. The best known is the water-
screw* (also called κοχλίας) which was apparently invented by him in Egypt, for the purpose of irrigating fields. It was also
used for pumping water out of mines or from the hold of ships.

Another invention was that of a sphere constructed so as to imitate the motions of the sun, the moon, and the five planets in
the heavens. Cicero actually saw this contrivance and gives a description of it †, stating that it represented the periods of the
moon and the apparent motion of the sun with such accuracy that it would even (over a short period) show the eclipses of the
sun and moon. Hultsch conjectures that it was moved by water ‡. We know, as above stated, from Pappus that Archimedes
wrote a book on the construction of such a sphere (περί σϕαιροποίιας), and Pappus speaks in one place of “those who
understand the making of spheres and produce a model of the heavens by means of the regular circular motion of water.” In any
case it is certain that Archimedes was much occupied with astronomy. Livy calls him “unicus spectator caeli siderumque.”
Hipparchus says§, “From these observations it is clear that the differences in the years are altogether small, but, as to the
solstices, I almost think (ούκ άπελπίζω) that both I and Archimedes have erred to the extent of a quarter of a day both in the
observation and in the deduction therefrom.” It appears therefore that Archimedes had considered the question of the length of
the year, as Ammianus also states ∥. Macrobius says that he discovered the distances of the planets ¶. Archimedes himself
describes in the Sand-reckoner the apparatus by which he measured the apparent diameter of the sun, or the angle subtended by
it at the eye.

The story that he set the Roman ships on fire by an arrangement of burning-glasses or concave mirrors is not found in any
authority earlier than Lucian*; and the so-called loculus Archi- medius, which was a sort of puzzle made of 14 pieces of ivory



of different shapes cut out of a square, cannot be supposed to be his invention, the explanation of the name being perhaps that it
was only a method of expressing that the puzzle was cleverly made, in the same way as the πρóβλημα ‘Αρχιμήδειον came to
be simply a proverbial expression for something very difficult†.

* Eutocius mentions this work in his commentary on Archimedes’ Measurement of the circle, ώs ϕησιν ‘Ηρακλεiδοus ν τ ’ A ρχιμήδονς βίψ. He alludes to it
again in his commentary on Apollonius’ Conics (ed. Heiberg, Vol. II. p. 168), where, however, the name is wrongly given as ‘Ηράκλειος. This Heracleides is perhaps the
same as the Heracleides mentioned by Archimedes himself in the preface to his book On Spirals.

† An exhaustive collection of the materials is given in Heiberg’s Quaestiones Archimedeae (1879). The preface to Torelli’s edition also gives the main points, and the
same work (pp. 363—370) quotes at length most of the original references to the mechanical inventions of Archimedes. Further, the article Archimedes (by Hultsch) in
Pauly-Wissowa’s Real-Encyclopädie der classischen Altertumswissenschaften gives an entirely admirable summary of all the available information. See also Susemihl’s
Geschichte der griechischen Litteratur in der Alexandrinerzeit, I. pp. 723—733.

‡ Tzetzes, Chiliad., II. 35, 105.
§ Pheidias is mentioned in the Sand-reckoner of Archimedes, τ υ προτ ρωυ άστρολόγωυ Εύδòξον... Φεδία δ  το  άμο  πατρòs (the last words being the

correction of Blass for το ’ Ακούπατρος, the reading of the text). Cf. Schol. Clark, in Gregor. Nazianz. Or. 34, p. 355 a Morel. Φειδίας τò μ ν γ νος ήυ Συρακόσιος
άστρολòγος ò ’Αρχιμήδους πατήρ.

* Diodorus v. 37, 3, ούς [τούs κοχλίας] ’Αρχιμήδης ò Σνρακòσιος εύρεν, öτεπαρ βαλευ είς Αίγυπτου
† Plutarch, Marcellus, 14.
‡ ibid. 17.
§ Pappus VIII. p. 1026 (ed Hultsch). Κάρπος δ  πού ϕησιυ ò ’Αυτιοχεύς ’Αρχιμήδη τòυ Συρακòσιου υ μòυου βιβλίου συντεταχ υαι μηχανικòν τò κατά τήν

σϕαιροποιίαν, τ ν δ  άλλων ούδ ν ήξιωκ ναι συντάξαι. καίτοι παρά το ς πολλο ς πί μηχανικ  δοξασθείς καί μεγαλλοϕνής τις γενòμενος ó θανμαστóς κε νος,
ώστε διαμε ναι παρά π σιν άνθρώποις ύπερβαλλòντως ύμνούμενος τ ν τε προηγομ νων γεωμετρικ ς καί άριθμητικ ς χομ νων θεωρίας τά βραχύτατα δοκ
ντα είναι σπονδαίως συν τγραϕεν δς ϕαίνεται τάς είρημ νας πιστήμας ούτως άγαπήσας ώς μηδ ν ξωθεν ύπομ νειν αύτα ς πεισάγειν.

* Polybius, Hist. viii. 7—8; Livy xxiv. 34; Plutarch, Marcelluss, 15—17.
† Plutarch, Marcellus, 17.
‡ ibid.
§ Livy xxv. 31. Gum multa irae, multa auaritiae foeda exempla ederentur, Archimedem memoriae proditum est in tanto tumultu, quantum pauor captae urbis in discursu

diripientium militum ciere poterat, intentum formis, quas in puluere descripserat, ab ignaro milite quis esset interfectum; aegre id Marcellum tulisse sepulturaeque curam
habitam, et propinquis etiam inquisitis honori praesidioque nomen ac memoriam eius fuisse.

* Plutarch, Marcellus, 19.
† Tzetze, Chil. II. 35, 135; Zonaras IX. 5.
‡ Plutarch, Marcelllus, 17 ad fin.
§ Cicero, Tusc. v. 64 sq.
* Plutarch, Marcellus, 17.
† Vitruvius, Architect, IX. 3. For an explanation of the manner in which Archimedes probably solved this problem, see the note following On floating bodies, I. 7 (p.

259 sq.).
‡ Pappus VIII. p. 1060.
§ Plutarch, Marcellus, 14.
∥ Proclus, Comm. on Eucl. I., p. 63 (ed. Friedlein).
* Athenaeus v. 207 a-b, κατασκενάσας γάρ λικα τò τηλικο τον σκάφος εις τήν θάλσσαν κατήγαγε. πτ τος δ ’Αρχιμήδης εύρε τήν τ ς λικος κατασκενήν. To

the same effect is the statement of Eustathius ad II. in. p. 114 (ed. Stallb.) λ γεται δ  λιξ καί τι μηχαν ς είδος, δ πρ τος εύρών ò ’Αρχιμήδης εύδοκίμησ , ϕασι, δι’
αύτο .

† Pappus VIII. pp. 1066, 1108 sq.
‡ Galen, in Hippocr. De artic, IV. 47 (= XVII. p. 747, ed. Kühn).
§ Oribasius, Coll. med., XLIX. 22 (IV. p. 407, ed. Bussemaker), ’Α πελλίδονς  ’Αρχιμήδους τρίσπαστον, described in the same passage as having been invented

πρòς τàς τ ν πλοίων καθολκάς.
∥ Tzetzes, Chil. II. 130.
¶ Ibid., III. 61, ò γ ν άνασπ υ μηχαυ  τ  τρισπάστψ βο υ· òπα β  καί σαλεύσω πήν χθòνα.
** Heiberg compares Simplicius, Comm. in Aristot. Phys. (ed. Diels, p. 1110, 1. 2), ταύτη δ  τ  άναλογία το  κιυο ντος καί το  κινουμ νου καί το

διαστήματος τò σταθμιστικòν δργανον τòν καλούμενον χαριστίωνα σνστήσας ò ’Αρχιμήδης ώς μ χρι παντòς τ ς άναλογίας προχωρούσης κóμπαεν κε νο τò  β
 καί σαλεύσω τήν γ ν.

* Diodorus I. 34, v. 37; Vitruvius x. 16 (11); Philo III. p. 330 (ed. Pfeiffer); Strabo XCII. p. 807; Athenaeus v. 208 f.
† Cicero, De rep., I. 21-22; Tusc, I. 63; De nat. deor., II. 88. Cf. Ovid, Fasti, VI. 277; Lactantius, Instit., II. 5, 18; Martianus Capella, II. 212, VI. 583 sq.; Claudian,

Epigr. 18 ; Sextus Empiricus, p. 416 (ed. Bekker).
‡ Zeitschrift f. Math. u. Physik  (hist litt. Abth.), XXII. (1877), 106 sq.
§ Ptolemy, σύνταξις, I. p. 153.
∥ Ammianus Marcell., XXVI. i. 8.
¶ Macrobius, in Somn. Scip., II. 3.
* The same story is told of Proclus in Zonaras XIV. 3. For the other references on the subject see Heiberg’s Quaestiones Archimedeae, pp. 39-41.
† Cf. also Tzetzes, Chil. XII. 270, τ ν ’Αρχιμήδονς μηχαν ν χρείαν χω.



CHAPTER II.

MANUSCRIPTS AND PRINCIPAL EDITIONS—ORDER OF COMPOSITION—DIALECT—LOST WORKS.

THE sources of the text and versions are very fully described by Heiberg in the Prolegomena to Vol. hi. of his edition of
Archimedes, where the editor supplements and to some extent amends what lie had previously written on the same subject in
his dissertation entitled Quaestiones Archimedeae (1879). It will therefore suffice here to state briefly the main points of the
discussion.

The MSS. of the best class all had a common origin in a MS. which, so far as is known, is no longer extant. It is described
in one of the copies made from it (to be mentioned later and dating from some time between A.D. 1499 and 1531) as ‘most
ancient’ (παλαιοτάτον;), and all the evidence goes to show that it was written as early as the 9th or 10th century. At one time it
was in the possession of George Valla, who taught at Venice between the years 1486 and 1499; and many important inferences
with regard to its readings can be drawn from some translations of parts of Archimedes and Eutocius made by Valla himself
and published in his book entitled de expetendis et fugiendis rebus (Venice, 1501). It appears to have been carefully copied
from an original belonging to some one well versed in mathematics, and it contained figures drawn for the most part with great
care and accuracy, but there was considerable confusion between the letters in the figures and those in the text. This MS., after
the death of Valla in 1499, became the property of Albertus Pius Carpensis (Alberto Pio, prince of Carpi). Part of his library
passed through various hands and ultimately reached the Vatican ; but the fate of the Valia MS. appears to have been different,
for we hear of its being in the possession of Cardinal Rodolphus Pius (Rodolfo Pio), a nephew of Albertus, in 1544, after
which it seems to have disappeared. The three most important MSS. extant are:

F (= Codex Florentinus bibliothecae Laurentianae Mediceae plutei xxviii. 4 to.).
B (= Codex Parisinus 2360, olim Mediceus).
C (= Codex Parisinus 2361, Fonteblandensis).
Of these it is certain that B was copied from the Yalla MS. This is proved by a note on the copy itself, which states that the

archetype formerly belonged to George Valla and afterwards to Albertus Pius. From this it may also be inferred that B was
written before the death of Albertus in 1531; for, if at the date of B the Valla MS. had passed to Rodolphus Pius, the name of
the latter would presumably have been mentioned. The note referred to also gives a list of peculiar abbreviations used in the
archetype, which list is of importance for the purpose of comparison with F and other MSS.

From a note on C it appears that that MS. was written by one Christophorus Auverus at Rome in 1544, at the expense of
Georgius Armagniacus (Georges d’Αrmagnac), Bishop of Rodez, then on a mission from King Francis I. to Pope Paul III.
Further, a certain Guilelmus Philander, in a letter to Francis I. published in an edition of Vitruvius (1552), mentions that he was
allowed, by the kindness of Cardinal Rodolphus Pius, acting at the instance of Georgius Armagniacus, to see and make extracts
from a volume of Archimedes which was destined to adorn the library founded by Francis at Fontainebleau. He adds that the
volume had been the property of George Valla. We can therefore hardly doubt that C was the copy which Georgius
Armagniacus had made in order to present it to the library at Fontainebleau.

Now F, B and C all contain the same works of Archimedes and Eutocius, and in the same order, viz. (1) two Books de
sphaera et cylindro, (2) de dimensione circuli, (3) de conoidibus, (4) de lineis spiralibus, (5) de planis aeque ponder
antibus, (6) arenarius, (7) quadratura parabolae, and the commentaries of Eutocius on (1) (2) and (5). At the end of the
quadratura parabolae both F and B give the following lines:

εύτνχοίθς λ ον γεώμετρα
πολλούς είς λνκάβαντας ίοις πολύ ϕίλτατε μούσαις.

F and C also contain mensurae from Heron and two fragments περί σταθμ ν and Trcpt περί μ τρων, the order being the same
in both and the contents only differing in the one respect that the last fragment περί μ τρων is slightly longer in F than in C.

A short preface to C states that the first page of the archetype was so rubbed and worn with age that not even the name of
Archimedes could be read upon it, while there was no copy at Rome by means of which the defect could be made good, and
further that the last page of Heron’s de mensuris was similarly obliterated. Now in F the first page was apparently left blank at
first and afterwards written in by a different hand with many gaps, while in B there are similar deficiencies and a note attached
by the copyist is to the effect that the first page of the archetype was indistinct. In another place (p. 4 of Yol. hi., ed. Heiberg)
all three MSS. have the same lacuna, and the scribe of B notes that one whole page or even two are missing.

Now C could not have been copied from F because the last page of the fragment περί μ τρων is perfectly distinct in F; and,
on the other hand, the archetype of F must have been illegible at the end because there is no word at the end of F, nor any other
of the signs by which copyists usually marked the completion of their task. Again, Valla’s translations show that his MS. had
certain readings corresponding to correct readings in B and C instead of incorrect readings given by F. Hence F cannot have



been Valla’s MS. itself.
The positive evidence about F is as follows. Valla’s translations, with the exception of the few readings just referred to,

agree completely with the text of F. From a letter written at Venice in 1491 by Angelus Politianus (Angelo Poliziano) to
Laurentius Mediceus (Lorenzo de’ Medici), it appears that the former had found a MS. at Venice containing works by
Archimedes and Heron and proposed to have it copied. As G. Valla then lived at Venice, the MS. can hardly have been any
other but his, and no doubt F was actually copied from it in 1491 or soon after. Confirmatory evidence for this origin of F is
found in the fact that the form of most of the letters in it is older than the 15th century, and the abbreviations etc., while they all
savour of an ancient archetype, agree marvellously with the description which the note to B above referred to gives of the
abbreviations used in Valla’s MS. Further, it is remarkable that the corrupt passage corresponding to the illegible first page of
the archetype just takes up one page of F, no more and no less.

The natural inference from all the evidence is that F, B and C all had their origin in the Yalla MS. ; and of the three F is the
most trustworthy. For (1) the extreme care with which the copyist of F kept to the original is illustrated by a number of
mistakes in it which correspond to Valla’s readings but are corrected in B and C, and (2) there is no doubt that the writer of B
was somewhat of an expert and made many alterations on his own authority, not always with success.

Passing to other MSS., we know that Pope Nicholas V. had a MS. of Archimedes which he caused to be translated into
Latin. The translation was made by Jacobus Cremonensis (Jacopo Cas- siani*), and one copy of this was written out by
Joannes Regiomontanus (Johann Muller of Konigsberg, near Hassfurt, in Franconia), about 1461, who not only noted in the
margin a number of corrections of the Latin but added also in many places Greek readings from another MS. This copy by
Regiomontanus is preserved at Nürnberg and was the source of the Latin translation given in the editio princeps of Thomas
Gechauff Venatorius (Basel, 1544); it is called Nb by Heiberg. (Another copy of the same translation is alluded to by
Regiomontanus, and this is doubtless the Latin MS. 327 of 15th c. still extant at Venice.) From the fact that the translation of
Jacobus Cremonensis has the same lacuna as that in F, B and C above referred to (Vol. hi., ed. Heiberg, p. 4), it seems clear
that the translator had before him either the Valla MS. itself or (more likely) a copy of it, though the order of the books in the
translation differs in one respect from that in our MSS., viz. that the arenarius comes after instead of before the quadratura
parabolae.

It is probable that the Greek MS. used by Regiomontanus was V (= Codex Venetus Marcianus cccv. of the 15th c.), which
is still extant and contains the same books of Archimedes and Eutocius with the same fragment of Heron as F has, and in the
same order. If the above conclusion that F dates from 1491 or thereabouts is correct, then, as V belonged to Cardinal
Bessarione who died in 1472, it cannot have been copied from F, and the simplest way of accounting for its similarity to F is to
suppose that it too was derived from Valla’s MS.

Regiomontanus mentions, in a note inserted later than the rest and in different ink, two other Greek MSS., one of which he
calls “exemplar vetus apud magistrum Paulum.” Probably the monk Paulus (Albertini) of Venice is here meant, whose date was
1430 to 1475; and it is possible that the “exemplar vetus” is the MS. of .Valla.

The two other inferior MSS., viz. A (= Codex Parisinus 2359, olim Mediceus) and D (=Cod. Parisinus 2362,
Fonteblandensis), owe their origin to V.

It is next necessary to consider the probabilities as to the MSS. used by Nicolas Tartaglia for his Latin translation of
certain of the works of Archimedes. The portion of this translation published at Venice in 1543 contained the books de centris
gravium vel de aequerepentibus I—II, tetragonismus [parabolae] , dimensio circuli and de insidentibus aquae I; the rest,
consisting of Book II de insidentibus aquae, was published with Book I of the same treatise, after Tartaglia’s death in 1557,
by Troianus Curtius (Venice, 1565). Now the last-named treatise is not extant in any Greek MS. and, as Tartaglia adds it,
without any hint of a separate origin, to the rest of the books which he says he took from a mutilated and almost illegible Greek
MS., it might easily be inferred that the Greek MS. contained that treatise also. But it is established, by a letter written by
Tartaglia himself eight years later (1551) that he then had no Greek text of the Books de insidentibus aquae, and it would be
strange if it had disappeared in so short a time without leaving any trace. Further, Commandinus in the preface to his edition of
the same treatise (Bologna, 1565) shows that he had never heard of a Greek text of it. Hence it is most natural to suppose that it
reached Tartaglia from some other source and in the Latin translation only*.

The fact that Tartaglia speaks of the old MS. which he used as “fracti et qui vix legi poterant libri,” at practically the same
time as the writer of the preface to C was giving a similar description of Valla’s MS., makes it probable that the two were
identical; and this probability is confirmed by a considerable agreement between the mistakes in Tartaglia and in Valla’s
versions.

But in the case of the quadratura parabolae and the dimensio circidi Tartaglia adopted bodily, without alluding in any
way to the source of it, another Latin translation published by Lucas G-auricus “Iuphanensis ex regno Neapolitano “ (Luca
Gaurico of Gif uni) in 1503, and he copied it so faithfully as to reproduce most obvious errors and perverse punctuation, only
filling up a few gaps and changing some figures and letters. This translation by Gauricus is seen, by means of a comparison
with Valla’s readings and with the translation of Jacobus Cremonensis, to have been made from the same MS. as the latter, viz.



that of Pope Nicolas V.
Even where Tartaglia used the Valla MS. he does not seem to have taken very great pains to decipher it when it was not

easily legible—it may be that he was unused to deciphering MSS.—and in such cases he did not hesitate to draw from other
sources. In one place (de planor. equilib. II. 9) he actually gives as the Archimedean proof a paraphrase of Eutocius somewhat
retouched and abridged, and in many other instances he has inserted corrections and interpolations from another Greek MS.
which he once names. This MS. appears to have been a copy made from F, with interpolations due to some one not unskilled in
the subject-matter; and this interpolated copy of F was apparently also the source of the Niirnberg MS. now to be mentioned.

Na (= Codex Norimbergensis) was written in the 16th century and brought from Rome to Niirnberg by Wilibald
Pirckheymer. It contains the same works of Archimedes and Eutocius, and in the same order, as F, but was evidently not copied
from F direct, while, on the other hand, it agrees so closely with Tartaglia’s version as to suggest a common origin. Na was
used by Venatorius in preparing the editio princeps, and Venatorius corrected many mistakes in it with his own hand by notes
in the margin or on slips attached thereto; he also made many alterations in the body of it, erasing the original, and sometimes
wrote on it directions to the printer, so that it was probably actually used to print from. The character of the MS. shows it to
belong to the same class as the others; it agrees with them in the more important errors and in having a similar lacuna at the
beginning. Some mistakes common to it and F alone show that its source was F, though at second hand, as above indicated.

It remains to enumerate the principal editions of the Greek text and the published Latin versions which are based, wholly
or partially, upon direct collation of the MSS. These are as follows, in addition to Gaurico’s and Tartaglia’s translations.

1. The editio princeps published at Basel in 1544 by Thomas Gechauff Venatorius under the title Archimedis opera quae
quidem exstant omnia nunc primum graece et latine in lucem edita. Adiecta quoque sunt Eutocii Ascalonitae commentaria
item graece et latine nunquam antea excusa. The Greek text and the Latin version in this edition were taken from different
sources, that of the Greek text being Na, while the translation was Joannes Regiomontanus’ revised copy (Nb) of the Latin
version made by Jacobus Cremonensis from the MS. of Pope Nicolas Y. The revision by Regiomontanus was effected by the
aid of (1) another copy of the same translation still extant, (2) other Greek MSS., one of which was probably Y, while another
may have been Yalla’s MS. itself.

2. A translation by F. Commandinus (containing the following works, circuli dirnensio, de lineis spiralibus, quadratura
parabolae, de conoidibus et sphaeroidibus, de arenae numero ) appeared at Yenice in 1558 under the title Archimedis opera
nonnulla in latinum conversa et commentariis illustrata. For this translation several MSS. were used, among which was Y,
but none preferable to those which we now possess.

3. D. Rivault’s edition, Archimedis opera quae exstant graece et latine novis demonstr. et comment. illustr. (Paris,
1615), gives only the propositions in Greek, while the proofs are in Latin and somewhat retouched. Rivault followed the Basel
editio princeps with the assistance of B.

4. Torelli’s edition (Oxford, 1792) entitled ’Αρχιμήδονς τά σωζóμενα μετά τ ν Εύτοκίον ’Ασκαλωνίτον ύπομνημάτων,
Archimedis quae supersunt omnia cum Eutocii Ascalonitae commentariis ex recensione J. Torelli Veronensis cum nova
versione latina. Accedunt lectiones variantes ex codd. Mediceo et Parisiensibus. Torelli followed the Basel editio princeps
in the main, but also collated V. The book was brought out after Torelli’s death by Abram Robertson, who added the collation
of five more MSS., F, A, B, C, D, with the Basel edition. The collation however was not well done, and the edition was not
properly corrected when in the press.

5.  Last of all comes the definitive edition of Heiberg (Archimedis opera omnia cum commentariis Eutocii. E codice
Florentino recensuit, Latine uertit notisque illustrauit J. L. Heiberg. Leipzig 1880—1).

The relation of all the MSS. and the above editions and translations is well shown by Heiberg in the following scheme
(with the omission, however, of his own edition):



The remaining editions which give portions of Archimedes in Greek, and the rest of the translations of the complete works
or parts of them which appeared before Heiberg’s edition, were not based upon any fresh collation of the original sources,
though some excellent corrections of the text were made by some of the editors, notably Wallis and Nizze. The following books
may be mentioned.

Joh. Chr. Sturm, Des unvergleichlichen Archimedis Kunstbücher, übersetzt und erläutert  (Nürnberg, 1670). This
translation embraced all the works extant in Greek and followed three years after the same author’s separate translation of the
Sand-reckoner. It appears from Sturm’s preface that he principally used the edition of Rivault.

Is. Barrow, Opera Archimedis, Apollonii Pergaei conicorum libri, Theodosii sphaerica methodo novo illustrata et
demonstrata (London 1675).

Wallis, Archimedis arenarius et dimensio circuit, Eutocii in hanc commentarii cum versione et notis  (Oxford, 1678),
also given in Wallis’ Opera, Vol. III. pp. 509—546.

Karl Friedr. Hauber, Archimeds zwei Bücher üher Kugel und Cylinder. Ebendesselben Kreismessung. Uebersetzt mit
Anmerkungen u. 8. w. begleitet (Tübingen, 1798).

F. Peyrard, (Œuvres d’ Archimède, traduites littéralement, avec un commentaire, suivies d’un mémoire du traducteur,
sur un nouveau miroir ardent, et d’un autre mémoire de M. Delambre, sur Varith-métique des Grecs . (Second edition,
Paris, 1808.)

Ernst Nizze, Archimedes von Syrakus vorhandene Werke, (aus dem Griechischen übersetzt und mit erläuternden und
kritischen Anmer- kungen begleitet (Stralsund, 1824).

The MSS. give the several treatises in the following order.

1. περί σϕαίρας καί κνλίνδρον α′ β′, two Books On the Sphere and Cylinder.
2. κύκλον μ τρησις*, Measurement of a Circle.
3. περί κωνοειδ ων καί σφαιρειδ ων, On Conoids and Spheroids.
4. περί λίκων, On Spirals.
5. πιπ δων ίσορροπι ν α′ β′ †, two Books On the Equilibrium of Planes.
6. ψαμμίτης The Sand-reckoner.
7. τετραγωνισμòς παραβολ ς (a name substituted later for that given to the treatise by Archimedes himself, which must

undoubtedly have been τετραγωνισμòς τ ς το  òρθογωνίον κώνον τομ ι ‡), Quadrature of the Parabola.
To these should be added
8. περί òχονμ νων §, the Greek title of the treatise On floating bodies, only preserved in a Latin translation.
The books were not, however, written in the above order; and Archimedes himself, partly through his prefatory letters and

partly by the use in later works of properties proved in earlier treatises, gives indications sufficient to enable the chronological
sequence to be stated approximately as follows :

1. On the equilibrium of planes, I.
2. Quadrature of the Parabola.
3. On the equilibrium of planes, II.
4. On the Sphere and Cylinder, I, II.
5. On Spirals.
6. On Conoids and Spheroids.
7. On floating bodies, I, II.
8. Measurement of a circle.
9. The Sand-reckoner.

It should however be observed that, with regard to (7), no more is certain than that it was written after (6), and with regard
to (8) no more than that it was later than (4) and before (9).

In addition to the above we have a collection of Lemmas (Liber Assumptorum) which has reached us through the Arabic.
The collection was first edited by S. Foster, Miscellanea (London, 1659), and next by Borelli in a book published at Florence,
1661, in which the title is given as Liber assumptorum Archimedis interprete Thebit ben Kora et exponente doctore
Almochtasso Abilhasan. The Lemmas cannot, however, have been written by Archimedes in their present form, because his
name is quoted in them more than once. The probability is that they were propositions collected by some Greek writer* of a
later date for the purpose of elucidating some ancient work, though it is quite likely that some of the propositions were of
Archimedean origin, e.g. those concerning the geometrical figures called respectively άρβηλος † (literally ‘shoemaker’s



knife’) and σάλινον (probably a ‘salt-cellar’*), and Prop. 8 which bears on the problem of trisecting an angle.
Archimedes is further credited with the authorship of the Cattle-problem enunciated in the epigram edited by Lessing in

1773. According to the heading prefixed to the epigram it was communicated by Archimedes to the mathematicians at
Alexandria in a letter to Eratosthenes*. There is also in the Scholia to Plato’s Charmides 165 E a reference to the problem
“called by Archimedes the Cattle-problem” (τò κληθ ν ύπ’ ’Αρχιμήδονς βοεικòν πρóβλημα). The question whether
Archimedes really propounded the problem, or whether his name was only prefixed to it in order to mark the extraordinary
difficulty of it, has been much debated. A complete account of the arguments for and against is given in an article by
Krumbiegel in the Zeitschrift für Mathematik und Physik (Hist. litt. Abtheilung) xxv. (1880), p. 121 sq., to which Amthor
added (ibid. p. 153 sq.) a discussion of the problem itself. The general result of Krumbiegel’s investigation is to show (1) that
the epigram can hardly have been written by Archimedes in its present form, but (2) that it is possible, nay probable, that the
problem was in substance originated by Archimedes. Hultsch* has an ingenious suggestion as to the occasion of it. It is known
that Apollonius in his ώκντóκιον had calculated a closer approximation to the value of π than that of Archimedes, and he must
therefore have worked out more difficult multiplications than those contained in the Measurement of a circle . Also the other
work of Apollonius on the multiplication of large numbers, which is partly preserved in Pappus, was inspired by the Sand-
reckoner of Archimedes; and, though we need not exactly regard the treatise of Apollonius as polemical, yet it did in fact
constitute a criticism of the earlier book. Accordingly, that Archimedes should then reply with a problem which involved such
a manipulation of immense numbers as would be difficult even for Apollonius is not altogether outside the bounds of
possibility. And there is an unmistakable vein of satire in the opening words of the epigram “Compute the number of the oxen
of the Sun, giving thy mind thereto, if thou hast a share of wisdom,” in the transition from the first part to the second where it is
said that ability to solve the first part would entitle one to be regarded as “not unknowing nor unskilled in numbers, but still not
yet to be numbered among the wise,” and again in the last lines. Hultsch concludes that in any case the problem is not much
later than the time of Archimedes and dates from the beginning of the 2nd century b.c. at the latest.

Of the extant books it is certain that in the 6th century a.d. only three were generally known, viz. On the Sphere and
Cylinder, the Measurement of a circle, and On the equilibrium of planes. Thus Eutocius of Ascalon who wrote commentaries
on these works only knew the Quadrature of the Parabola by name and had never seen it nor the book On Spirals. Where
passages might have been elucidated by references to the former book, Eutocius gives explanations derived from Apollonius
and other sources, and he speaks vaguely of the discovery of a straight line equal to the circumference of a given circle “by
means of certain spirals,” whereas, if he had known the treatise On Spirals, he would have quoted Prop. 18. There is reason to
suppose that only the three treatises on which Eutocius commented were contained in the ordinary editions of the time such as
that of Isidorus of Miletus, the teacher of Eutocius, to which the latter several times alludes.

In these circumstances the wonder is that so many more books have survived t(5 the present day. As it is, they have lost to
a considerable extent their original form. Archimedes wrote in the Doric dialect*, but in the best known books (On the Sphere
and Cylinder and the Measurement of a circle ) practically all traces of that dialect have disappeared, while a partial loss of
Doric forms has taken place in other books, of which however the Sand-reckoner has suffered least. Moreover in all the
books, except the Sand-reckoner, alterations and additions were first of all made by an interpolator who was acquainted with
the Doric dialect, and then, at a date subsequent to that of Eutocius, the book On the Sphere and Cylinder and the
Measurement of a circle were completely recast.

Of the lost works of Archimedes the following can be identified.

1. Investigations relating to polyhedra are referred to by Pappus who, after alluding (v. p. 352) to the five regular
polyhedra, gives a description of thirteen others discovered by Archimedes which are semi-regular, being contained by
polygons equilateral and equiangular but not similar.

2. A book of arithmetical content, entitled άρχαί Principles and dedicated to Zeuxippus. We learn from Archimedes
himself that the book dealt with the naming of numbers (κατονóμαξις τ ν άριθμ ν) † and expounded a system of expressing
numbers higher than those which could be expressed in the ordinary Greek notation. This system embraced all numbers up to
the enormous figure which we should now represent by a 1 followed by 80,000 billion ciphers; and, in setting out the same
system in the Sand-reckoner, Archimedes explains that he does so for the benefit of those who had not had the opportunity of
seeing the earlier work addressed to Zeuxippus.

3. περί ζνγ ν, On balances or levers, in which Pappus says (viii. p. 1068) that Archimedes proved that “greater circles
overpower (κατακρατο σι) lesser circles when they revolve about the same centre.” It was doubtless in this book that
Archimedes proved the theorem assumed by him in the Quadrature of the Parabola, Prop. 6, viz. that, if a body hangs at rest
from a point, the centre of gravity of the body and the point of suspension are in the same vertical line.

4. κεντροβρικά, On centres of gravity. This work is mentioned by Simplicius on Aristot. de caelo II. (Scholia in Arist.
508 a 30). Archimedes may be referring to it when he says (On the equilibrium of planes I. 4) that it has before been proved
that the centre of gravity of two bodies taken together lies on the line joining the centres of gravity of the separate bodies. In the



treatise On floating bodies Archimedes assumes that the centre of gravity of a segment of a paraboloid of revolution is on the
axis of the segment at a distance from the vertex equal to rds of its length. This may perhaps have been proved in the
κεντροβρικά, if it was not made the subject of a separate work.

Doubtless both the περί ζνγ ν and the κετροβαρικά preceded the extant treatise On the equilibrium of planes.

5. κατοπτρικά, an optical work, from which Theon (on Ptolemy, Synt. I. p. 29, ed. Halma) quotes a remark about
refraction. Cf. Olympiodorus in Aristot Meteor., n. p. 94, ed. Ideler.

6.  περί σϕαιροποιίας, On sphere-making, a mechanical work on the construction of a sphere representing the motions of
the heavenly bodies as already mentioned (p. XXI).

7. ϕóδιον, a Method, noticed by Suidas, who says that Theodosius wrote a commentary on it, but gives no further
information about it.

8. According to Hipparchus Archimedes must have written on the Calendar or the length of the year (cf. p. XXI).

Some Arabian writers attribute to Archimedes works (1) On a heptagon in a circle, (2) On circles touching one another,
(3) On parallel lines, (4) On triangles, (5) On the properties of rightangled triangles, (6) a book of Data; but there is no
confirmatory evidence of his having written such works. A book translated into Latin from the Arabic by Gongava (Louvain,
1548) and entitled antiqui scriptoris de speculo comburente concavitatis parabolae cannot be the work of Archimedes, since
it quotes Apollonius.

* Tiraboschi, Storia delta Letteratura Italiana, Vol. vi. Pt. 1 (p. 358 of the edition of 1807). Cantor (Vorlesungen üb. Gesch. d. Math, II. p. 192) gives the full name
and title as Jacopo da S. Gassiano Cremonese canonico regolare.

* The Greek fragment of Book I., περί τ ν ύδατι ϕιταμ νων  περί τ ν òχονμ νων, edited by A. Mai from two Vatican MSS. ( Classici auct. I. p. 426-30 ; Vol.
II. of Heiberg’s edition, pp. 356–8), seems to be of doubtful authenticity. Except for the first proposition, it contains enunciations only and no proofs. Heiberg is inclined to
think that it represents an attempt at retranslation into Greek made by some mediaeval scholar, and he compares the similar attempt made by Rivault.

* Pappus alludes (I. p. 312, ed. Hultsch) to the κύκλον μ τρησις in the words ν τ  περί τ ς το  κύκλον περιϕερείας.
† Archimedes himself twice alludes to properties proved in Book I. as demonstrated ν το ς μηχανικο ς (Quadrature of the Parabola, Props. 6, 10). Pappus (viii. p.

1034) quotes τά ’Αρχιμήδονς περί ίσορροπι ν. The beginning of Book i. is also cited by Proclus in his Commentary on Eucl. I., p. 181, where the reading should be το  
 ίσορροπι ν, and not τ ν άνισορροπι ν (Hultsch).

‡ The name ‘parabola’ was first applied to the curve by Apollonius. Archimedes always used the old term * section of a right-angled cone.’ Cf. Eutocius (Heiberg, vol.
III., p. 342) δ δεικται ν τ  περί τ ς το  δρθογωνίον κώνον τομ ς.

§ This title corresponds to the references to the book in Strabo I. p. 54 (’Αρχιμήδης ν το ς περί τ ν òχονμ νων) and Pappus p. 1024 (ώς ’Αρχιμμήδης òχονμ
νοις). The fragment edited by Mai has a longer title,περί τ ν ϋδατι ϕισταμ νων  περί τ ν δχονμ νων, where the first part corresponds to Tartaglia’s version, de
insidentibus aquae, and to that of Commandinus, de Us quae vehuntur in aqua. But Archimedes intentionally used the more general word ύγρòν (fluid) instead of
ϋδωρ; and hence the shorter title περί òχονμ νων, de iis quae in humido vehuntur (Torelli and Heiberg), seems the better.

* It would seem that the compiler of the Liber Assumptorum must have drawn, to a considerable extent, from the same sources as Pappus. The number of
propositions appearing substantially in the same form in both collections is, I think, even greater than has yet been noticed. Tannery (La Géométrie grecque , p. 162)
mentions, as instances, Lemmas 1, 4, 5, 6; but it will be seen from the notes in this work that there are several other coincidences.

† Pappus gives (p. 208) what he calls an ‘ancient proposition’ (άρχαία πρòτασις) about the same figure, which he describes as χωρίον, δ δή καλο σιν ρβηλον. Cf.
the note to Prop. 6 (p. 308). The meaning of the word is gathered from the Scholia to Nicander, Theriaca, 423: άρβηλοι λ γονται τά κνκλοτερ  σιδήρια, ο ς οί
σκτοτóμοι τ μνονσι καί ξύονσι τά δ ρματα. Cf. Hesychius, άνάρβηλα, τά μή ξεσμ να δ ρματα άρβηλοι γάρ τά σμιλία.

* The best authorities appear to hold that in any case the name σάλινον was not applied to the figure in question by Archimedes himself but by some later writer.
Subject to this remark, I believe σάλινον to be simply a Graecised form of the Latin word salinum. We know that a salt-cellar was an essential part of the domestic
apparatus in Italy from the early days of the Eoman Republic. “All who were raised above poverty had one of silver which descended from father to son (Hor., Carrn. n.
16, 13, Liv. xxvi. 36), and was accompanied by a silver patella which was used together with the saltcellar in the domestic sacrifices (Pers. ra. 24, 25). These two articles
of silver were alone compatible with the simplicity of Roman manners in the early times of the Republic (Plin., H. N. XXXIII. § 153, Val. Max. iv. 4, § 3). …In shape the
salinum was probably in most cases a round shallow bowl” [Diet, of Greek and Roman Antiquities , article salinum]. Further we have in the early chapters of
Mommsen’s History of Rome abundant evidence of similar transferences of Latin words to the Sicilian dialect of Greek. Thus (Book i., ch. XIII.) it is shown that, in
consequence of Latino-Sicilian commerce, certain words denoting measures of weight, libra, triens, quadransy sextans, uncia, found their way into the common speech
of Sicily in the third century of the city under the forms λίτρα, τρι ς, τετρ ς, ξ ς, ούγκία. Similarly Latin law-terms (ch. XI.) were transferred; thus mutuum (a form of
loan) became μο τον, carcer (a prison) κάρκαρον. Lastly, the Latin word for lard, arvina, became in Sicilian Greek άρβίνη, and patina (a dish) πατάνη The last word is
as close a parallel for the supposed transfer of salinum as could be wished. Moreover the explanation of σάλινον as salinum has two obvious advantages in that (1) it
does not require any alteration in the word, and (2) the resemblance of the lower curve to an ordinary type of salt-cellar is evident. I should add, as confirmation of my
hypothesis, that Dr A. S. Murray, of the British Museum, expresses the opinion that we cannot be far wrong in accepting as a salinum one of the small silver bowls in the
Roman ministerium at the Museum which was found at Chaourse (Aisne) in France and is of a section sufficiently like the curve in the Salinon.



The other explanations of σάλινον which have been suggested are as follows.
(1) Cantor connects it with σάλος, “das Schwanken des hohen Meeres,” and would presumably translate it as wave-line. But the resemblance is not altogether

satisfactory, and the termination -ινον would need explanation.
(2) Heiberg says the word is “sine dubio ab Arabibus deprauatum,” and suggests that it should be σ λινον, parsley (“ex similitudine frondis apii”). But, whatever may

be thought of the resemblance, the theory that the word is corrupted is certainly not supported by the analogy of άρβηλος which is correctly reproduced by the Arabs, as
we know from the passage of Pappus referred to in the last note.

(3) Dr Gow suggests that σάλινον may be a ‘sieve,’ comparing σάλαξ. But this guess is not supported by any evidence.
* The heading is, Πρòβλημα δπερ ’Αρχιμήδης ν πιγρμμσασιν εύρών το ς ν ’Αλεξανδρεία περί τα τα πραγματεμομ νοις ζητε ν άπ στειλεν ν τ  πρòς

’Eρατοσθ νην τòν Kνρηνα ον πιστολ . Heiberg translates this as “the problem which Archimedes discovered and sent in an epigram…in a letter to Eratosthenes.” He
admits however that the order of words is against this, as is also the use of the plural πιγράμμασιν. It is clear that to take the two expressions ν πιγράμμασιν and άν 
πιστολ  as both following πιστειλεν is very awkward. In fact there seems to be no alternative but to translate, as Krumbiegel does, in accordance with the order of the
words, “a problem which Archimedes found among (some) epigrams and sent…in his letter to Eratosthenes”; and this sense is certainly unsatisfactory. Hultsch remarks
that, though the mistake πραγ ματονμ νοις for πραγτενομ νοις and the composition of the heading as a whole betray the hand of a writer who lived some centuries after
Archimedes, yet he must have had an earlier source of information, because he could hardly have invented the story of the letter to Eratosthenes.

* Pauly-Wissowa’s Real-Encyclopädie, II. 1, pp. 534, 5.
* Thus Eutocius in his commentary on Prop. 4 of Book II. On the Sphere and Cylinder speaks of the fragment, which he found in an old book and which appeared to

him to be the missing supplement to the proposition referred to, as “preserving in part Archimedes’ favourite Doric dialect” ( ν μ ρει τήν ’Αρχιμήδει ϕιλημ Δωρíδα γλ
σσαν άπ σωζον). From the use of the expression μ μ ρει Heiberg concludes that the Doric forms had by the time of Eutocius begun to disappear in the books which
have come down to us no less than in the fragment referred to.

† Observing that in all the references to this work in the Sand-reckoner Archimedes speaks of the naming of numbers or of numbers which are names or have
their names (άριθμοί κατωνομασμ νοι, τά óνóματα χοντες, τάν κατονομαξίαν χοντες), Hultsch (Pauly-Wissowa’s Real-Encyclopädie, n. 1, p. 511) speaks of
καονóμαξις τ ν άριθμ ν as the name of the work; and he explains the words τινάς τ ν ν άρχα ς <άριθμ ν> τ ν κατονομαξίαν χóντων as meaning “some of the
numbers mentioned at the beginning which have a special name,” where “at the beginning” refers to the passage in which Archimedes first mentions τ νύϕ’ άμ ν
κατωνομασμ νων άριθμ ν καί νδεδομ νων ν το ς ποτί Ζεύξιππον γεγραμμ νοις. But ν άρχα ς seems a less natural expression for “at the beginning” than ν
άρχ  or κατ’ άρχάς would have been. Moreover, there being no participial expression except κατονομαξίαν χòντων to be taken with ν άρχα ς in this sense, the
meaning would be unsatisfactory; for the numbers are not named at the beginning, but only referred to, and therefore some word like ειημήνων should have been used.
For these reasons I think that Heiberg, Cantor and Susemihl are right in taking άρχαι to be the name of the treatise.



CHAPTER III.

THE RELATION OF ARCHIMEDES TO HIS PREDECESSORS.

AN extraordinarily large proportion of the subject matter of the writings of Archimedes represents entirely new
discoveries of his own. Though his range of subjects was almost encyclopaedic, embracing geometry (plane and solid),
arithmetic, mechanics, hydrostatics and astronomy, he was no compiler, no writer of textbooks; and in this respect he differs
even from his great successor Apollonius, whose work, like that of Euclid before him, largely consisted of systematising and
generalising the methods used, and the results obtained, in the isolated efforts of earlier geometers. There is in Archimedes no
mere working-up of existing materials; his objective is always some new thing, some definite addition to the sum of
knowledge, and his complete originality cannot fail to strike any one who reads his works intelligently, without any
corroborative evidence such as is found in the introductory letters prefixed to most of them. These introductions, however, are
eminently characteristic of the man and of his work; their directness and simplicity, the complete absence of egoism and of any
effort to magnify his own achievements by comparison with those of others or by emphasising their failures where he himself
succeeded : all these things intensify the same impression. Thus his manner is to state simply what particular discoveries made
by his predecessors had suggested to him the possibility of extending them in new directions; e.g. he says that, in connexion
with the efforts of earlier geometers to square the circle and other figures, it occurred to him that no one had endeavoured to
square a parabola, and he accordingly attempted the problem and finally solved it. In like manner, he speaks, in the preface of
his treatise On the Sphere and Cylinder, of his discoveries with reference to those solids as supplementing the theorems about
the pyramid, the cone and the cylinder proved by Eudoxus. He does not hesitate to say that certain problems baffled him for a
long time, and that the solution of some took him many years to effect; and in one place (in the preface to the book On Spirals)
he positively insists, for the sake of pointing a moral, on specifying two propositions which he had enunciated and which
proved on further investigation to be wrong. The same preface contains a generous eulogy of Conon, declaring that, but for his
untimely death, Conon would have solved certain problems before him and would have enriched geometry by many other
discoveries in the meantime.

In some of his subjects Archimedes had no fore-runners, e.g. in hydrostatics, where he invented the whole science, and (so
far as mathematical demonstration was concerned) in his mechanical investigations. In these cases therefore he had, in laying
the foundations of the subject, to adopt a form more closely resembling that of an elementary textbook, but in the later parts he
at once applied himself to specialised investigations.

Thus the historian, of mathematics, in dealing with Archimedes’ obligations to his predecessors, has a comparatively easy
task before him. But it is necessary, first, to give some description of the use which Archimedes made of the general methods
which had found acceptance with the earlier geometers, and, secondly, to refer to some particular results which he mentions as
having been previously discovered and as lying at the root of his own investigations,’ or which he tacitly assumes as known.

§ 1. Use of traditional geometrical methods.
In my edition of the Conics of Apollonius*, I endeavoured, following the lead given in Zeuthen’s work, Die Lehre von den

Kegelschnitten im Altertum, to give some account of what has been fitly called the geometrical algebra which played such an
important part in the works of the Greek geometers. The two main methods included under the term were (1) the use of the
theory of proportions, and (2) the method of application of areas, and it was shown that, while both methods are fully
expounded in the Elements of Euclid, the second was much the older of the two, being attributed by the pupils of Eudemus
(quoted by Proclus) to the Pythagoreans. It was pointed out that the application of areas, as set forth in the second Book of
Euclid and extended in the sixth, was made by Apollonius the means of expressing what he takes as the fundamental properties
of the conic sections, namely the properties which we express by the Cartesian equations

referred to any diameter and the tangent at its extremity as axes; and the latter equation was compared with the results obtained
in the 27th, 28th and 29th Props, of Euclid’s Book vi, which are eiquivalent to the solution, by geometrical means, of the
quadratic equations

It was also shown that Archimedes does not, as a rule, connect his description of the central conics with the method of
application of areas, as Apollonius does, but that Archimedes generally expresses the fundamental property in the form of a



proportion

and, in the case of the ellipse,

where x, x1 are the abscissae measured from the ends of the diameter of reference.
It results from this that the application of areas is of much less frequent occurrence in Archimedes than in Apollonius. It is

however used by the former in all but the most general form. The simplest form of “applying a rectangle” to a given straight
line which shall be equal to a given area occurs e.g. in the proposition On the equilibrium of Planes II. 1; and the same mode
of expression is used (as in Apollonius) for the property y2 = px in the parabola, px being described in Archimedes’ phrase as
the rectangle “applied to” (παραίπιπτον παρά) a line equal to p and “having at its width” (πλάτος χον) the abscissa (x). Then
in Props. 2, 25, 26, 29 of the book On Conoids and Spheroids we have the complete expression which is the equivalent of
solving the equation

ax + x2 = b2,

“let a rectangle be applied (to a certain straight line) exceeding by a square figure (παραπεπτωκ τω χωρίον ύπερβάλλον είδει
τετραγώνω) and equal to (a certain rectangle).” Thus a rectangle of this sort has to be made (in Prop. 25) equal to what we
have above called x. xx in the case of the hyperbola, which is the same thing as x(a + x) or ax + x2, where a is the length of the
transverse axis. But, curiously enough, we do not find in Archimedes the application of a rectangle “falling short by a square
figure,” which we should obtain in the case of the ellipse if we substituted x(a − x) for x. x1. In the case of the ellipse the area
x. x1 is represented (On Conoids and Spheroids, Prop. 29) as a gnomon which is the difference between the rectangle h. h1
(where h, h1 are the abscissae of the ordinate bounding a segment of an ellipse) and a rectangle applied to h1−h and exceeding
by a square figure whose side is h − x; and the rectangle h. h1 is simply constructed from the sides h, h1. Thus Archimedes
avoids* the application of a rectangle falling short by a square, using for x.x1 the rather complicated form

h. h1 − {(h1 − h) (h − x) + (h − x)2}.

It is easy to see that this last expression is equal to x. x1 for it reduces to

It will readily be understood that the transformation of rectangles and squares in accordance with the methods of Euclid,
Book 11, is just as important to Archimedes as to other geometers, and there is no need to enlarge on that form of geometrical
algebra.

The theory of proportions, as expounded in the fifth and sixth Books of Euclid, including the transformation of ratios
(denoted by the terms componendo, dividendo, etc.) and the composition or multiplication of ratios, made it possible for the
ancient geometers to deal with magnitudes in general and to work out relations between them with an effectiveness not much
inferior to that of modem algebra. Thus the addition and subtraction of ratios could be effected by procedure equivalent to what
we should in algebra call bringing to a common denominator. Next, the composition or multiplication of ratios could be
indefinitely extended, and hence the algebraical operations of multiplication and division found easy and convenient
expression in the geometrical algebra. As a particular case, suppose that there is a series of magnitudes in continued proportion
(i.e. in geometrical progression) as a0, a1, a2, … an, so that

We have then, by multiplication,



It is easy to understand how powerful such a method as that of proportions would become in the hands of an Archimedes,
and a few instances are here appended in order to illustrate the mastery with which he uses it.

1. A good example of a reduction in the order of a ratio after the manner just shown is furnished by On the equilibrium of
Planes II. 10. Here Archimedes has a ratio which we will call a3/b3 where a2/b2 = c/d; and he reduces the ratio between cubes
to a ratio between straight lines by taking two lines x, y such that

It follows from this that

or

and hence

2. In the last example we have an instance of the use of auxiliary fixed lines for the purpose of simplifying ratios and
thereby, as it were, economising power in order to grapple the more successfully with a complicated problem. With the aid of
such auxiliary lines or (what is the same thing) auxiliary fixed points in a figure, combined with the use of proportions,
Archimedes is able to effect some remarkable eliminations.

Thus in the proposition On the Sphere and Cylinder II. 4 he obtains three relations connecting three as yet undetermined
points, and proceeds at once to eliminate two of the points, so that the problem is then reduced to finding the remaining point by
means of one equation. Expressed in an algebraical form, the three original relations amount to the three equations

and the result, after the elimination of y and z, is stated by Archimedes in a form equivalent to

Again the proposition On the equilibrium of Planes II. 9 proves by the same method of proportions that, if a, b, c, d, x, y,
are straight lines satisfying the conditions

and

then

The proposition is merely brought in as a subsidiary lemma to the proposition following, and is not of any intrinsic importance;
but a glance at the proof (which again introduces an auxiliary line) will show that it is a really extraordinary instance of the
manipulation of proportions.

3. Yet another instance is worth giving here. It amounts to the proof that, if



then

A, A′ are the points of contact of two parallel tangent planes to a spheroid; the plane of the paper is the plane through AA′ and
the axis of the spheroid, and PP′ is the intersection of this plane with another plane at right angles to it (and therefore parallel
to the tangent planes), which latter plane divides the spheroid into two segments whose axes are AN, A′N. Another plane is
drawn through

the centre and parallel to the tangent plane, cutting the spheroid into two halves. Lastly cones are drawn whose bases are the
sections of the spheroid by the parallel planes as shown in the figure.

Archimedes’ proposition takes the following form [On Conoids and Spheroids, Props. 31, 32].
APP′ being the smaller segment of the two whose common base is the section through PP′, and x, y being the coordinates of

P, he has proved in preceding propositions that

and

and he seeks to prove that

The method is as follows.

We have

If we suppose

the ratio of the cones becomes .

Next, by hypothesis (α),

Therefore, ex aequali,

It follows from (β) that



whence

Now we have to obtain the ratio of the segment A′PP′ to the cone A′PP′, and the comparison between the segment APP′ and the
cone A′PP′ is made by combining two ratios ex aequali. Thus

and

Thus combining the last three proportions, ex aequali, we have

since a2 = z(a − x), by (γ).

[The object of the transformation of the numerator and denominator of the last fraction, by which z (2a − x) and z (a − x) are
made the first terms, is now obvious, because  is the fraction which Archimedes wishes to arrive at, and, in order to

prove that the required ratio is equal to this, it is only necessary to show that

Now

so that

4. One use by Euclid of the method of proportions deserves mention because Archimedes does not use it in similar
circumstances. Archimedes (Quadrature of the Parabola, Prop. 23) sums a particular geometric series

in a manner somewhat similar to that of our text-books, whereas Euclid (IX. 35) sums any geometric series of any number of
terms by means of proportions thus.

Suppose a1, a2, … an, an+1 to be (n+1) terms of a geometric series in which an+1 is the greatest term. Then

Therefore

Adding all the antecedents and all the consequents, we have



which gives the sum of n terms of the series.

§ 2. Earlier discoveries affecting quadrature and cuba-ture.
Archimedes quotes the theorem that circles are to one another as the squares on their diameters  as having being proved

by earlier geometers, and he also says that it was proved by means of a certain lemma which he states as follows: “Of unequal
lines, unequal surfaces, or unequal solids, the greater exceeds the less by such a magnitude as is capable, if added [continually]
to itself, of exceeding any given magnitude of those which are comparable with one another (τ ν πρòς άλληλα λεγομ νων).”
We know that Hippocrates of Chios proved the theorem that circles are to one another as the squares on their diameters, but no
clear conclusion can be established as to the method which he used. On the other hand, Eudoxus (who is mentioned in the
preface to The Sphere and Cylinder as having proved two theorems in solid geometry to be mentioned presently) is generally
credited with the invention of the method of exhaustion by which Euclid proves the proposition in question in XII. 2. The
lemma stated by Archimedes to have been used in the original proof is not however found in that form in Euclid and is not used
in the proof of XII. 2, where the lemma used is that proved by him in X. 1, viz. that “Given two unequal magnitudes, if from the
greater [a part] be subtracted greater than the half, if from the remainder [a part] greater than the half be subtracted, and so on
continually, there will be left some magnitude which will be less than the lesser given magnitude.” This last lemma is
frequently assumed by Archimedes, and the application of it to equilateral polygons inscribed in a circle or sector in the
manner of XII. 2 is referred to as having been handed down in the Elements*, by which it is clear that only Euclid’s Elements
can be meant. The apparent difficulty caused by the mention of two lemmas in connexion with the theorem in question can,
however, I think, be explained by reference to the proof of X. 1 in Euclid. He there takes the lesser magnitude and says that it is
possible, by multiplying it, to make it some time exceed the greater, and this statement he clearly bases on the 4th definition of
Book V. to the effect that “magnitudes are said to bear a ratio to one another, which can, if multiplied, exceed one another.”
Since then the smaller magnitude in X. 1 may be regarded as the difference between some two unequal magnitudes, it is clear
that the lemma first quoted by Archimedes is in substance used to prove the lemma in X. 1 which appears to play so much
larger a part in the investigations in quadrature and cubature which have come down to us.

The two theorems which Archimedes attributes to Eudoxus by namet † are

(1) that any pyramid is one third part of the prism which has the same base as the pyramid and equal height, and
(2) that any cone is one third part of the cylinder which has the same base as the cone and equal height.
The other theorems in solid geometry which Archimedes quotes as having been proved by earlier geometers are*:
(3) Cones of equal height are in the ratio of their bases, and conversely.
(4) If a cylinder be divided by a plane parallel to the base, cylinder is to cylinder as axis to axis.
(5) Cones which have the same bases as cylinders and equal height with them are to one another as the cylinders.
(6) The bases of equal cones are reciprocally proportional to their heights, and conversely.
(7) Cones the diameters of whose bases have the same ratio as their axes are in the triplicate ratio of the diameters of

their bases.
In the preface to the Quadrature of the Parabola he says that earlier geometers had also proved that
(8) Spheres have to one another the triplicate ratio of their diameters; and he adds that this proposition and the first of

those which he attributes to Eudoxus, numbered (1) above, were proved by means of the same lemma, viz. that the difference
between any two unequal magnitudes can be so multiplied as to exceed any given magnitude, while (if the text of Heiberg is
right) the second of the propositions of Eudoxus, numbered (2), was proved by means of “a lemma similar to that aforesaid.”
As a matter of fact, all the propositions (1) to (8) are given in Euclid’s twelfth Book, except (5), which, however, is an easy
deduction from (2); and (1), (2), (3), and (7) all depend upon the same lemma [X. 1] as that used in Eucl. XII. 2.

The proofs of the above seven propositions, excluding (5), as given by Euclid are too long to quote here, but the following
sketch will show the line taken in the proofs and the order of the propositions. Suppose ABCD to be a pyramid with a
triangular base, and suppose it to be cut by two planes, one bisecting AB, AC, AD in F, G, E respectively, and the other
bisecting BC, BD, BA in H, K, F respectively. These planes are then each parallel to one face, and they cut off two pyramids
each similar to the original pyramid and equal to one another, while the remainder of the pyramid is proved to form two equal
prisms which, taken together, are greater than one half of the original pyramid [XII. 3]. It is next proved [XII. 4] that, if there
are two pyramids with triangular bases and equal height, and if they are each divided in the manner shown into two equal
pyramids each similar to the whole and two prisms, the sum of the prisms in one pyramid is to the sum of the prisms in the
other in the ratio of the bases of the whole pyramids respectively. Thus, if we divide in the same manner the two pyramids
which remain in each, then all the pyramids which remain, and so on continually, it follows on the one hand, by X. 1, that we
shall ultimately have pyramids remaining which are together less than any assigned solid, while on the other hand the sums of



all the prisms resulting from the successive subdivisions are in the ratio of the bases of the original pyramids. Accordingly
Euclid is able to use the regular method of exhaustion exemplified in XII. 2, and to establish the proposition [XII. 5] that
pyramids with the same height and with triangular bases are to one another as their bases. The proposition is then extended
[XII. 6] to pyramids with the same height and with polygonal bases. Next [XII. 7] a prism with a triangular base is divided into
three pyramids which are shown to be equal by means of XII. 5; and it follows, as a corollary, that any pyramid is one third
part of the prism which has the same base and equal height. Again, two similar and similarly situated pyramids are taken and
the solid parallelepipeds are completed, which are then seen to be six times as large as the pyramids respectively; and, since
(by XI. 33) similar parallelepipeds are in the triplicate ratio of corresponding sides, it follows that the same is true of the
pyramids [XII. 8]. A corollary gives the obvious extension to the case of similar pyramids with polygonal bases. The
proposition [XII. 9] that, in equal pyramids with triangular bases, the bases are reciprocally proportional to the heights is
proved by the same method of completing the parallelepipeds and using XI. 34; and similarly for the converse. It is next proved
[XII. 10] that, if in the circle which is the base of a cylinder a square be described, and then polygons be successively
described by bisecting the arcs remaining in each case, and so doubling the number of sides, and if prisms of the same height as
the cylinder be erected on the square and the polygons as bases respectively, the prism with the square base will be greater
than half the cylinder, the next prism will add to it more than half of the remainder, and so on. And each prism is triple of the
pyramid with the same base and altitude. Thus the same method of exhaustion as that in XII. 2 proves that any cone is one third
part of the cylinder with the same base and equal height. Exactly the same method is used to prove [XII. 11] that cones and
cylinders which have the same height are to one another as their bases, and [XII. 12] that similar cones and cylinders are to one
another in the triplicate ratio of the diameters of their bases (the latter proposition depending of course on the similar
proposition XII. 8 for pyramids). The next three propositions are proved without fresh recourse to X. 1. Thus the criterion of
equimultiples laid down in Def. 5 of Book V. is used to prove [XII. 13] that, if a cylinder be cut by a plane parallel to its
bases, the resulting cylinders are to one another as their axes. It is an easy deduction [XII. 14] that cones and cylinders which
have equal bases are proportional to their heights, and [XII. 15] that in equal cones and cylinders the bases are reciprocally
proportional to the heights, and, conversely, that cones or cylinders having this property are equal. Lastly, to prove that spheres
are to one another in the triplicate ratio of their diameters [XII. 18], a new procedure is adopted, involving two preliminary
propositions. In the first of these [XII. 16] it is proved, by an application of the usual lemma X. 1, that, if two concentric
circles are given (however nearly equal), an equilateral polygon can be inscribed in the outer circle whose sides do not touch
the inner; the second proposition [XII. 17] uses the result of the first to prove that, given two concentric spheres, it is possible
to inscribe a certain polyhedron in the outer so that it does not anywhere touch the inner, and a corollary adds the proof that, if
a similar polyhedron be inscribed in a second sphere, the volumes of the polyhedra are to one another in the triplicate ratio of
the diameters of the respective spheres. This last property is then applied [XII. 18] to prove that spheres are in the triplicate
ratio of their diameters.

§ 3. Conic Sections.
In my edition of the Conics of Apollonius there is a complete account of all the propositions in conics which are used by

Archimedes, classified under three headings, (1) those propositions which he expressly attributes to earlier writers, (2) those
which are assumed without any such reference, (3) those which appear to represent new developments of the theory of conics
due to Archimedes himself. As all these properties will appear in this volume in their proper places, it will suffice here to
state only such propositions as come under the first heading and a few under the second which may safely be supposed to have
been previously known.

Archimedes says that the following propositions “are proved in the elements of conics,” i.e. in the earlier treatises of
Euclid and Aristaeus.

1. In the parabola

(a) if PV be the diameter of a segment and QVq the chord parallel to the tangent at P, then QV = Vq;



(b) if the tangent at Q meet VP produced in T, then PV = PT;

(c) if two chords QVq, Q′V′q′ each parallel to the tangent at P meet the diameter PV in V, V′ respectively,

PV : PV′ = QV2 : Q′V′2.

2. If straight lines drawn from the same point touch any conic section whatever, and if two chords parallel to the
respective tangents intersect one another, then the rectangles under the segments of the chords are to one another as the squares
on the parallel tangents respectively.

3. The following proposition is quoted as proved “in the conics.” If in a parabola pa be the parameter of the principal
ordinates, QQ′ any chord not perpendicular to the axis which is bisected in V by the diameter PV, p the parameter of the
ordinates to PV, and if QD be drawn perpendicular to PV, then

QV2 : QD2 = p : pα.

[On Conoids and Spheroids, Prop. 3, which see.]

The properties of a parabola, PN2 = pa · A N, and QV2 = p . PV, were already well known before the time of Archimedes.
In fact the former property was used by Menaechmus, the discoverer of conic sections, in his duplication of the cube.

It may be taken as certain that the following properties of the ellipse and hyperbola were proved in the Conics of Euclid.

1. For the ellipse
PN2 : AN . A′N = P′N′2 : AN′ . A′N′ = CB2 : CA2

and QV2 : PV . P′V = Q′V′2 : PV′ . P′V′ = CD2 : CP2.

(Either proposition could in fact be derived from the proposition about the rectangles under the segments of intersecting chords
above referred to.)

2. For the hyperbola
PN2 : AN . A′N = P′N′2 : AN′ . A′N′

and QV2 : PV . P′V = Q′V′2 : PV′ . P′V′,
though in this case the absence of the conception of the double hyperbola as one curve (first found in Apollonius) prevented
Euclid, and Archimedes also, from equating the respective ratios to those of the squares on the parallel semidiameters.

3. In a hyperbola, if P be any point on the curve and PK, PL be each drawn parallel to one asymptote and meeting the
other,

PK . PL = (const.)
This property, in the particular case of the rectangular hyperbola, was known to Menaechmus.

It is probable also that the property of the subnormal of the parabola (NG = pα) was known to Archimedes’ predecessors.
It is tacitly assumed, On floating bodies, II. 4, etc.

From the assumption that, in the hyperbola, AT < AN (where N is the foot of the ordinate from P, and T the point in which
the tangent at P meets the transverse axis) we may perhaps infer that the harmonic property

TP : TP′ = PV : P′V,
or at least the particular case of it,

TA : TA′ = AN : A′N,
was known before Archimedes’ time.

Lastly, with reference to the genesis of conic sections from cones and cylinders, Euclid had already stated in his
Phaenomena that, “if a cone or cylinder be cut by a plane not parallel to the base, the resulting section is a section of an acute-
angled cone [an ellipse] which is similar to a θυρεóς.” Though it is not probable that Euclid had in mind any other than a right
cone, the statement should be compared with On Conoids and Spheroids, Props. 7, 8, 9.

§ 4. Surfaces of the second degree.

Prop. 11 of the treatise On Conoids and Spheroids states without proof the nature of certain plane sections of the



conicoids of revolution. Besides the obvious facts (1) that sections perpendicular to the axis of revolution are circles, and (2)
that sections through the axis are the same as the generating conic, Archimedes asserts the following.

1. In a paraboloid of revolution any plane section parallel to the axis is a parabola equal to the generating parabola.

2. In a hyperboloid of revolution any plane section parallel to the axis is a hyperbola similar to the generating hyperbola.

3. In a hyperboloid of revolution a plane section through the vertex of the enveloping cone is a hyperbola which is not
similar to the generating hyperbola.

4. In any spheroid a plane section parallel to the axis is an ellipse similar to the generating ellipse.

Archimedes adds that “the proofs of all these propositions are manifest (ϕανεραί).” The proofs may in fact be supplied as
follows.

1. Section of a paraboloid of revolution by a plane parallel to the axis.
Suppose that the plane of the paper represents the plane section through the axis AN which intersects the given plane

section at right angles, and let A′O be the line of intersection. Let POP′ be any double ordinate to AN in the section through the
axis, meeting A′O and AN at right angles in O, N respectively. Draw A′M perpendicular to AN.

Suppose a perpendicular drawn from O to A′O in the plane of the given section parallel to the axis, and let y be the length
intercepted by the surface on this perpendicular.

Then, since the extremity of y is on the circular section whose diameter is PP′,
y2 = PO . OP′.

If A′O = x, and if p is the principal parameter of the generating parabola, we have then

so that the section is a parabola equal to the generating parabola.

2. Section of a hyperboloid of revolution by a plane parallel to the axis.
Take, as before, the plane section through the axis which intersects the given plane section at right angles in A′O. Let the

hyperbola PAP′ in the plane of the paper represent the plane section through the axis, and let C be the centre (or the vertex of
the enveloping cone). Draw CC′ perpendicular to CA, and produce OA′ to meet it in C′. Let the rest of the construction be as
before.



Suppose that
CA = α, C′A′ = α′, C′O = x,

and let y have the same meaning as before.

Then y2 = PO . OP′ = PN2 − A′M2.
And, by the property of the original hyperbola,

PN2 : CN2 − CA2 = A′M2 : CM2 − CA2 (which is constant).

Thus

whence it appears that the section is a hyperbola similar to the original one.

3. Section of a hyperboloid of revolution by a plane passing through the centre (or the vertex of the enveloping cone).
I think there can be no doubt that Archimedes would have proved his proposition about this section by means of the same

general property of conics which he uses to prove Props. 3 and 12–14 of the same treatise, and which he enunciates at the
beginning of Prop. 3 as a known theorem proved in the “elements of conics,” viz. that the rectangles under the segments of
intersecting chords are as the squares of the parallel tangents.

Let the plane of the paper represent the plane section through the axis which intersects the given plane passing through the
centre at right angles. Let CA′O be the line of intersection, C being the centre, and A′ being the point where CA′O meets the
surface. Suppose CAMN to be the axis of the hyperboloid, and POp, P′O′p′ two double ordinates to it in the plane section
through the axis, meeting CA′O in O, O′ respectively; similarly let A′M be the ordinate from A′. Draw the tangents at A and A′ to
the section through the axis meeting in T, and let QOq, Q′O′q′ be the two double ordinates in the same section which are
parallel to the tangent at A− and pass through O, O′ respectively.

Suppose, as before, that y, y′ are the lengths cut off by the surface from the perpendiculars at O and O′ to OC in the plane of
the given section through CA′O, and that

CO = x, CO′ = x′, CA = α, CA′ = α′.



Then, by the property of the intersecting chords, we have, since QO = Oq,

Also
and, by the property of the hyperbola,

QO2 : x2 − a′2 = Q′O′2 : x′2 − a′2.

It follows, ex aequali, that

and therefore that the section is a hyperbola.
To prove that this hyperbola is not similar to the generating hyperbola, we draw CC′ perpendicular to CA, and C′A′ parallel

to CA meeting CO′ in C′ and Pp in U.
If then the hyperbola (α) is similar to the original hyperbola, it must by the last proposition be similar to the hyperbolic

section made by the plane through C′ A′ U′ at right angles to the plane of the paper.

Now

and PO . Op < PU . Up.
Therefore PO . Op : CO2 − CA′2 < PU . Up : C′U2 − C′A′2,
and it follows that the hyperbolas are not similar*.

4. Section of a spheroid by a plane parallel to the axis.

That this is an ellipse similar to the generating ellipse can of course be proved in exactly the same way as theorem (2)
above for the hyperboloid.

We are now in a position to consider the meaning of Archimedes’ remark that “the proofs of all these properties are
manifest.” In the first place, it is not likely that “manifest” means “known” as having been proved by earlier geometers; for
Archimedes’ habit is to be precise in stating the fact whenever he uses important propositions due to his immediate
predecessors, as witness his references to Eudoxus, to the Elements [of Euclid], and to the “elements of conics.” When we
consider the remark with reference to the cases of the sections parallel to the axes of the surfaces respectively, a natural
interpretation of it is to suppose that Archimedes meant simply that the theorems are such as can easily be deduced from the
fundamental properties of the three conics now expressed by their equations, coupled with the consideration that the sections
by planes perpendicular to the axes are circles. But I think that this particular explanation of the “manifest” character of the
proofs is not so applicable to the third of the theorems stating that any plane section of a hyperboloid of revolution through the
vertex of the enveloping cone but not through the axis is a hyperbola. This fact is indeed no more “manifest” in the ordinary
sense of the term than is the like theorem about the spheroid, viz. that any section through the centre but not through the axis is
an ellipse. But this latter theorem is not given along with the other in Prop. 11 as being “manifest”; the proof of it is included in
the more general proposition (14) that any section of a spheroid not perpendicular to the axis is an ellipse, and that parallel
sections are similar. Nor, seeing that the propositions are essentially similar in character, can I think it possible that
Archimedes wished it to be understood, as Zeuthen suggests, that the proposition about the hyperboloid alone, and not the
other, should be proved directly by means of the geometrical equivalent of the Cartesian equation of the conic, and not by
means of the property of the rectangles under the segments of intersecting chords, used earlier [Prop. 3] with reference to the
parabola and later for the case of the spheroid and the elliptic sections of the conoids and spheroids generally. This is the more
unlikely, I think, because the proof by means of the equation of the conic alone would present much more difficulty to the
Greek, and therefore could hardly be called “manifest.”

It seems necessary therefore to seek for another explanation, and I think it is the following. The theorems, numbered 1, 2,
and 4 above, about sections of conoids and spheroids parallel to the axis are used afterwards in Props. 15–17 relating to
tangent planes; whereas the theorem (3) about the section of the hyperboloid by a plane through the centre but not through the
axis is not used in connexion with tangent planes, but only for formally proving that a straight line drawn from any point on a
hyperboloid parallel to any transverse diameter of the hyperboloid falls, on the convex side of the surface, without it, and on
the concave side within it. Hence it does not seem so probable that the four theorems were collected in Prop. 11 on account of
the use made of them later, as that they were inserted in the particular place with special reference to the three propositions
(12–14) immediately following and treating of the elliptic sections of the three surfaces. The main object of the whole treatise



was the determination of the volumes of segments of the three solids cut off by planes, and hence it was first necessary to
determine all the sections which were ellipses or circles and therefore could form the bases of the segments. Thus in Props.
12–14 Archimedes addresses himself to finding the elliptic sections, but, before he does this, he gives the theorems grouped in
Prop. 11 by way of clearing the ground, so as to enable the propositions about elliptic sections to be enunciated with the utmost
precision. Prop. 11 contains, in fact, explanations directed to defining the scope of the three following propositions rather than
theorems definitely enunciated for their own sake; Archimedes thinks it necessary to explain, before passing to elliptic
sections, that sections perpendicular to the axis of each surface are not ellipses but circles, and that some sections of each of
the two conoids are neither ellipses nor circles, but parabolas and hyperbolas respectively. It is as if he had said, “My object
being to find the volumes of segments of the three solids cut off by circular or elliptic sections, I proceed to consider the
various elliptic sections; but I should first explain that sections at right angles to the axis are not ellipses but circles, while
sections of the conoids by planes drawn in a certain manner are neither ellipses nor circles, but parabolas and hyperbolas
respectively. With these last sections I am not concerned in the next propositions, and I need not therefore cumber my book
with the proofs; but, as some of them can be easily supplied by the help of the ordinary properties of conics, and others by
means of the methods illustrated in the propositions now about to be given, I leave them as an exercise for the reader.” This
will, I think, completely explain the assumption of all the theorems except that concerning the sections of a spheroid parallel to
the axis; and I think this is mentioned along with the others for symmetry, and because it can be proved in the same way as the
corresponding one for the hyperboloid, whereas, if mention of it had been postponed till Prop. 14 about the elliptic sections of
a spheroid generally, it would still require a proposition for itself, since the axes of the sections dealt with in Prop. 14 make an
angle with the axis of the spheroid and are not parallel to it.

At the same time the fact that Archimedes omits the proofs of the theorems about sections of conoids and spheroids parallel
to the axis as “manifest” is in itself sufficient to raise the presumption that contemporary geometers were familiar with the idea
of three dimensions and knew how to apply it in practice. This is no matter for surprise, seeing that we find Archytas, in his
solution of the problem of the two mean proportionals, using the intersection of a certain cone with a curve of double curvature
traced on a right circular cylinder *. But, when we look for other instances of early investigations in geometry of three
dimensions, we find practically nothing except a few vague indications as to the contents of a lost treatise of Euclid’s
consisting of two Books entitled Surface-loci (τόποι πρòς πιϕανεία)†. This treatise is mentioned by Pappus among other
works by Aristaeus, Euclid and Apollonius grouped as forming the so-called τόπος άναλνóμενος‡. As the other works in the
list which were on plane subjects dealt only with straight lines, circles and conic sections, it is a priori likely that the surface-
loci of Euclid included at least such loci as were cones, cylinders and spheres. Beyond this, all is conjecture based upon two
lemmas given by Pappus in connexion with the treatise.

First lemma to the Surface-loci of Euclid*.
The text of this lemma and the attached figure are not satisfactory as they stand, but they have been explained by Tannery in

a way which requires a change in the figure, but only the very slightest alteration in the text, as follows †. “If AB be a straight
line and CD be parallel to a straight line given in position, and if the ratio AD · DB : DC2 be [given], the point C lies on a
conic section. If now AB be no longer given in position and A, B be no longer given but lie on straight lines AE, EB given in
position‡, the point C raised above [the plane containing AE, EB] is on a surface given in position. And this was proved.”

According to this interpretation, it is asserted that, if AB moves with one extremity on each of the lines AE, EB which are
fixed, while DC is in a fixed direction and AD · DB : DC2 is constant, then C lies on a certain surface. So far as the first
sentence is concerned, AB remains of constant length, but it is not made precisely clear whether, when AB is no longer given in
position, its length may also vary§. If however AB remains of constant length for all positions which it assumes, the surface
which is the locus of C would be a complicated one which we cannot suppose that Euclid could have profitably investigated. It
may, therefore, be that Pappus purposely left the enunciation somewhat vague in order to make it appear to cover several
surface-loci which, though belonging to the same type, were separately discussed by Euclid as involving in each case
somewhat different sets of conditions limiting the generality of the theorem.

It is at least open to conjecture, as Zeuthen has pointed out*, that two cases of the type were considered by Euclid, namely,
(1) that in which AB remains of constant length while the two fixed straight lines on which A, B respectively move are parallel



instead of meeting in a point, and (2) that in which the two fixed straight lines meet in a point while AB moves always parallel
to itself and varies in length accordingly.

(1) In the first case, where the length of AB is constant and the two fixed lines parallel, we should have a surface
described by a conic moving bodily†. This surface would be a cylindrical surface, though it would only have been called a
“cylinder” by the ancients in the case where the moving conic was an ellipse, since the essence of a “cylinder” was that it
could be bounded between two parallel circular sections. If then the moving conic was an ellipse, it would not be difficult to
find the circular sections of the cylinder; this could be done by first taking a section at right angles to the axis, after which it
could be proved, after the manner of Archimedes, On Conoids and Spheroids, Prop. 9, first that the section is an ellipse or a
circle, and then, in the former case, that a section made by a plane drawn at a certain inclination to the ellipse and passing
through, or parallel to, the major axis is a circle. There was nothing to prevent Euclid from investigating the surface similarly
generated by a moving hyperbola or parabola; but there would be no circular sections, and hence the surfaces might perhaps
not have been considered as of very great importance.

(2) In the second case, where AE, BE meet at a point and AB moves always parallel to itself, the surface generated is of
course a cone. Some particular cases of this sort may easily have been discussed by Euclid, but he could hardly have dealt
with the general case, where DC has any direction whatever, up to the point of showing that the surface was really a cone in the
sense in which the Greeks understood the term, or (in other words) of finding the circular sections. To do this it would have
been necessary to determine the principal planes, or to solve the discriminating cubic, which we cannot suppose Euclid to have
done. Moreover, if Euclid had found the circular sections in the most general case, Archimedes would simply have referred to
the fact instead of setting himself to do the same thing in the particular case where the plane of symmetry is given. These
remarks apply to the case where the conic which is the locus of C is an ellipse ; there is still less ground for supposing that
Euclid could have proved the existence of circular sections where the conic was a hyperbola, for there is no evidence that
Euclid even knew that hyperbolas and parabolas could be obtained by cutting an oblique circular cone.

Second lemma to the Surface-loci.
In this Pappus states, and gives a complete proof of the proposition, that the locus of a point whose distance from a given

point is in a given ratio to its distance from a fixed line is a conic section, which is an ellipse, a parabola, or a hyperbola
according as the given ratio is less than, equal to, or greater than unity*. Two conjectures are possible as to the application
of this theorem by Euclid in the treatise referred to.

(1) Consider a plane and a straight line meeting it at any angle. Imagine any plane drawn at right angles to the straight line
and meeting the first plane in another straight line which we will call X. If then the given straight line meets the plane at right
angles to it in the point S, a conic can be described in that plane with S for focus and X for directrix; and, as the perpendicular
on X from any point on the conic is in a constant ratio to the perpendicular from the same point on the original plane, all points
on the conic have the property that their distances from S are in a given ratio to their distances from the given plane
respectively. Similarly, by taking planes cutting the given straight line at right angles in any number of other points besides S,
we see that the locus of a point whose distance from a given straight line is in a given ratio to its distance from a given
plane is a cone whose vertex is the point in which the given line meets the given plane, while the plane of symmetry passes
through the given line and is at right angles to the given plane. If the given ratio was such that the guiding conic was an
ellipse, the circular sections of the surface could, in that case at least, be found by the same method as that used by Archimedes
(On Conoids and Spheroids, Prop. 8) in the rather more general case where the perpendicular from the vertex of the cone on
the plane of the given elliptic section does not necessarily pass through the focus.

(2) Another natural conjecture would be to suppose that, by means of the proposition given by Pappus, Euclid found the
locus of a point whose distance from a given point is in a given ratio to its distance from a fixed plane . This would have
given surfaces identical with the conoids and spheroids discussed by Archimedes excluding the spheroid generated by the
revolution of an ellipse about the minor axis. We are thus brought to the same point as Chasles who conjectured that the
Surface-loci of Euclid dealt with surfaces of revolution of the second degree and sections of the same*. Recent writers have
generally regarded this theory as improbable. Thus Heiberg says that the conoids and spheroids were without any doubt
discovered by Archimedes himself; otherwise he would not have held it necessary to give exact definitions of them in his
introductory letter to Dositheus; hence they could not have been the subject of Euclid’s treatise †. I confess I think that the
argument of Heiberg, so far from being conclusive against the probability of Chasles’ conjecture, is not of any great weight. To
suppose that Euclid found, by means of the theorem enunciated and proved by Pappus, the locus of a point whose distance from
a given point is in a given ratio to its distance from a fixed plane does not oblige us to assume either that he gave a name to the
loci or that he investigated them further than to show that sections through the perpendicular from the given point on the given
plane were conics, while sections at right angles to the same perpendicular were circles; and of course these facts would
readily suggest themselves. Seeing however that the object of Archimedes was to find the volumes of segments of each surface,
it is not surprising that he should have preferred to give a definition of them which would indicate their form more directly than
a description of them as loci would have done; and we have a parallel case in the distinction drawn between conics as such



and conics regarded as loci, which is illustrated by the different titles of Euclid’s Conics and the Solid Loci of Aristaeus, and
also by the fact that Apollonius, though he speaks in his preface of some of the theorems in his Conics as useful for the
synthesis of ‘solid loci’ and goes on to mention the ‘locus with respect to three or four lines,’ yet enunciates no proposition
stating that the locus of such and such a point is a conic. There was a further special reason for defining the conoids and
spheroids as surfaces described by the revolution of a conic about its axis, namely that this definition enabled Archimedes to
include the spheroid which he calls ‘flat’ ( πιπλατύ σϕαιροειδ ς), i.e. the spheroid described by the revolution of an ellipse
about its minor axis, which is not one of the loci which the hypothesis assumes Euclid to have discovered. Archimedes’ new
definition had the incidental effect of making the nature of the sections through and perpendicular to the axis of revolution even
more obvious than it would be from Euclid’s supposed way of treating the surfaces; and this would account for Archimedes’
omission to state that the two classes of sections had been known before, for there would have been no point in attributing to
Euclid the proof of propositions which, with the new definition of the surfaces, became self-evident. The further definitions
given by Archimedes may be explained on the same principle. Thus the axis, as defined by him, has special reference to his
definition of the surfaces, since it means the axis of revolution, whereas the axis of a conic is for Archimedes a diameter. The
enveloping cone of the hyperboloid, which is generated by the revolution of the asymptotes about the axis, and the centre
regarded as the point of intersection of the asymptotes were useful to Archimedes’ discussion of the surfaces, but need not have
been brought into Euclid’s description of the surfaces as loci. Similarly with the axis and vertex of a segment of each surface.
And, generally, it seems to me that all the definitions given by Archimedes can be explained in like manner without prejudice
to the supposed discovery of three of the surfaces by Euclid.

I think, then, that we may still regard it as possible that Euclid’s Surface-loci was concerned, not only with cones,
cylinders and (probably) spheres, but also (to a limited extent) with three other surfaces of revolution of the second degree,
viz. the paraboloid, the hyperboloid and the prolate spheroid. Unfortunately however we are confined to the statement of
possibilities; and certainty can hardly be attained unless as the result of the discovery of fresh documents.

§ 5. Two mean proportionals in continued proportion.
Archimedes assumes the construction of two mean proportionals in two propositions (On the Sphere and Cylinder II. 1,

5). Perhaps he was content to use the constructions given by Archytas, Menaechmus*, and Eudoxus. It is worth noting,
however, that Archimedes does not introduce the two geometric means where they are merely convenient but not necessary;

thus, when (On the Sphere and Cylinder I. 34) he has to substitute for a ratio , where β > γ, a ratio between lines, and it

is sufficient for his purpose that the required ratio cannot be greater than  but may be less, he takes two arithmetic means

between β, γ, as δ, , and then assumes † as a known result that

*Apollonius of Perga, pp. ci sqq.

* The object of Archimedes was no doubt to make the Lemma in Prop. 2 (dealing with the summation of a series of terms of the form a .rx+(rx)2, where r
successively takes the values 1, 2, 3,…) serve for the hyperboloid of revolution and the spheroid as well.

* On the sphere and Cylinder, I.6
† ibid. Preface
* Lemmas placced between Props. 16 and 17 of Book i. On the Sphere and Cylinder.
* I think Archimedes is more likely to have used this proof than one on the lines suggested by Zeuthen (p. 421). The latter uses the equation of the hyperbola simply

and proceeds thus. If y have the same meaning as above, and if the coordinates of P referred to CA, CC′ as axes be z, x, while those of O referred to the same axes are z,
x we have, for the point P,

x2 = κ(z2 − a2),

where κ is constant.
Also, since the angle A′CA is given, x′ = az, where a is constant.

Thus y2 = x2 − x′2 = (κ − a2)z2 − κa2.

Now z is proportional to CO, being in fact equal to , and the equation becomes

which is clearly a hyperbola, since α2 < κ.



Now, though the Greeks could have worked out the proof in a geometrical form equivalent to the above, I think that it is alien from the manner in which Archimedes
regarded the equations to central conics. These he always expressed in the form of a proportion

and never in the form of an equation between areas like that used by Apollonius, viz.

Moreover the occurrence of the two different constants and the necessity of expressing them geometrically as ratios between areas and lines respectively would have
made the proof very long and complicated; and, as a matter of fact, Archimedes never does express the ratio y2/(x2 − a2) in the case of the hyperbola in the form of a
ratio between constant areas like b2/a2. Lastly, when the equation of the given section through CA′O was found in the form (1), assuming that the Greeks had actually
found the geometrical equivalent, it would still have been held necessary, I think, to verify that

before it was finally pronounced that the hyperbola represented by the equation and the section made by the plane were one and the same thing.
* Cf. Eutocius on Archimedes (Vol. III. pp. 98–102), or Apollonius of Perga, pp. xxii.–xxiii.
† By this term we conclude that the Greeks meant “loci which are surfaces” as distinct from loci which are lines. Cf. Proclus’ definition of a locus as “a position of a

line or a surf ace involving one and the same property” (γραμμ ς  πιϕενενείας θ σις ποιο σα ν καί ταύτòν σύμπτωμα), p. 394. Pappus (pp. 660–2) gives, quoting
from the Plane Loci of Apollonius, a classification of loci according to their order in relation to that of which they are the loci. Thus, he says, loci are (1) ϕεκτικοί, i.e.
fixed, e.g. in this sense the locus of a point is a point, of a line a line, and so on; (2) διεξοδικοί or moving along, a line being in this sense the locus of a point, a surface of
a line, and a solid of a surface; (3) άναστροϕικοί, turning backwards, i.e., presumably, moving backwards and forwards, a surface being in this sense the locus of a point,
and a solid of a line. Thus a surface-locus might apparently be either the locus of a point or the locus of a line moving in space.

‡ Pappus, pp. 634, 636.
* Pappus, p. 1004.

† Bulletin des sciences math., 2e Série, VI. 149.
‡ The words of the Greek text are γ νηται δ  πρòς θ σει εύθε ς τα ς AE, EB, and the above translation only requires εύθείαις instead of εύθε α. The figure in the

text is so drawn that ADB, AEB are represented as two parallel lines, and CD is represented as perpendicular to ADB and meeting AEB in E.
§ The words are simply “if AB be deprived of its position (στερηθ  τ ς θ σεως) and the points A, B be deprived of their [character of] being given” (στερηθ  το

δοθ ντος είναι).
* Zeuthen, Die Lehre von den Kegelschnitten, pp. 425 sqq.
† This would give a surface generated by a moving line, διεξοδικòς γραμμ ς as Pappus it.
* See Pappus, pp. 1006–1014, and Hultsch’s Appendix, pp. 1270–1273; or cf. Apollonius of Perga, pp. xxxvi.–xxxviii.
* Aperçu historique, pp. 273, 4.
† Litterargeschichtliche Studien über Euklid, p. 79.
* The constructions of Archytas and Menaechmus are given by Eutocius [Archimedes, Vol. III. pp. 92—102]; or see Apollonius of Perga, pp. xix—xxiii.
† The proposition is proved by Eutocius; see the note to On the Sphere and Cylinder I. 34(p.42).



CHAPTER IV.

ARITHMETIC IN ARCHIMEDES.

Two of the treatises, the Measurement of a circle  and the Sand-reckoner, are mostly arithmetical in content. Of the Sand-
reckoner nothing need be said here, because the system for expressing numbers of any magnitude which it unfolds and applies
cannot be better described than in the book itself; in the Measurement of a circle , however, which involves a great deal of
manipulation of numbers of considerable size though expressible by means of the ordinary Greek notation for numerals,
Archimedes merely gives the results of the various arithmetical operations, multiplication, extraction of the square root, etc.,
without setting out any of the operations themselves. Various interesting questions are accordingly involved, and, for the
convenience of the reader, I shall first give a short account of the Greek system of numerals and of the methods by which other
Greek mathematicians usually performed the various operations included under the general term λογιστική (the art of
calculating), in order to lead up to an explanation (1) of the way in which Archimedes worked out approximations to the
square roots of large numbers, (2) of his method of arriving at the two approximate values of  which he simply sets down
without any hint as to how they were obtained*.

§ 1. Greek numeral system.
It is well known that the Greeks expressed all numbers from 1 to 999 by means of the letters of the alphabet reinforced by

the addition of three other signs, according to the following scheme, in which however the accent on each letter might be
replaced by a short horizontal stroke above it, as ā.

α′, β′, γ′, δ′, ′, ς′, ζ′, η′, θ′ are 1, 2, 3, 4, 5, 6, 7, 8, 9 respectively.
ι′, κ′, λ′, μ′, ν′, ξ′, ο′, π′, ′ ” 10, 20, 30, ………90 ”

ρ′, σ′, τ′, υ′, Φ′, χ′, ψ′, ω′, ′ ” 100, 200, 300,… 900 ”

Intermediate numbers were expressed by simple juxtaposition (representing in this case addition), the largest number being
placed on the left, the next largest following it, and so on in order. Thus the number 153 would be expressed by ρυγ′ or ρυγ.
There was no sign for zero, and therefore 780 was ψπ′, and 306 τς′ simply.

Thousands (χιλιάδες) were taken as units of a higher order, and 1.0, 2,000, … up to 9,000 (spoken of as χίλιοι, δισχίλιυι,
κ.τ.λ.) were represented by the same letters as the first nine natural numbers but with a small dash in front and below the line;
thus e.g. ′ was 4.0, and, on the same principle of juxtaposition as before, 1,823 was expressed by ωκγ′ or ωκγ, 1,007 by 

ζ′, and so on.
Above 9,999 came a myriad (μυράς), and 10,000 and higher numbers were expressed by using the ordinary numerals with

the substantive μυρράδες taken as a new denomination (though the words μύριοι, δι−σμύριοι, τρισμύριοι, κ.τ.λ. are also
found, following the analogy of χίλιοι, δισχίοι and so on). Various abbreviations were used for the word μυριάς, the most
common being M or Mυ; and, where this was used, the number of myriads, or the multiple of 10.000, was generally written
over the abbreviation, though sometimes before it and even after it. Thus 349,450 was .*

Fractions (λεπτά) were written in a variety of ways. The most usual was to express the denominator by the ordinary
numeral with two accents affixed. When the numerator was unity, and it was therefore simply a question of a symbol for a
single word such as τρίτον, , there was no need to express the numerator, and the symbol was γ″; similarly ς″ = , ι ″ = ,
and so on. When the numerator was not unity and a certain number of fourths, fifths, etc., had to be expressed, the ordinary
numeral was used for the numerator; thus θ′ , ί . In Heron’s Geometry the denominator was written twice in the
latter class of fractions; thus  (δύο π μπτα) was β′ ε″ ε″, (λ πτà τειακοσττότριτα κγ′ or íκοσιτρíα τριακοστότριτα) was κγ′
λγ″ λγ″. The sign for , μισν, is in Archimedes, Diophantus and Eutocius L″, in Heron C or a sign similar to a capital S*.

A favourite way of expressing fractions with numerators greater than unity was to separate them into component fractions
with numerator unity, when juxtaposition as usual meant addition. Thus  was written  was 

; Eutocius writes  or  for , and so on. Sometimes the same fraction was separated into
several different sums; thus in Heron (p. 119, ed. Hultsch)  is variously expressed as

Sexagesimal fractions. This system has to be mentioned because the only instances of the working out of some arithmetical



operations which have been handed down to us are calculations expressed in terms of such fractions; and moreover they are of
special interest as having much in common with the modern system of decimal fractions, with the difference of course that the
submultiple is 60 instead of 10. The scheme of sexagesimal fractions was used by the Greeks in astronomical calculations and
appears fully developed in the σύνταξις of Ptolemy. The circumference of a circle, and along with it the four right angles
subtended by it at the centre, are divided into 360 parts (τμήματα or μοîραι) or as we should say degrees, each μοîρα into 60
parts called (first) sixtieths, (πρ τα) ξηκοστá, or minutes (λεπτά), each of these again into δεύτερα ξηκοστá (seconds), and
so on. A similar division of the radius of the circle into 60 parts (τμήματα) was also made, and these were each subdivided
into sixtieths, and so on. Thus a convenient fractional system was available for general arithmetical calculations, expressed in
units of any magnitude or character, so many of the fractions which we should represent by , so many of those which we
should write 2, 2, and so on any extent. It is therefore not surprising that Ptolemy should say in one place “In general we
shall use the method of numbers according to the sexagesimal manner because of the inconvenience of the [ordinary] fractions.”
For it is clear that the successive submultiples by 60 formed a sort of frame with fixed compartments into which any fractions
whatever could be located, and it is easy to see that e.g. in additions and subtractions the sexagesimal fractions were almost as
easy to work with as decimals are now, 60 units of one denomination being equal to one unit of the next higher denomination,
and “carrying” and “borrowing” being no less simple than it is when the number of units of one denomination necessary to
make one of the next higher is 10 instead of 60. In expressing the units of the circumference, degrees, μμîραι or the symbol 
was generally used along with the ordinary numeral which had a stroke above it; minutes, seconds, etc. were expressed by
one, two, etc. accents affixed to the numerals. Thus  β = 2°, μοιρ ι μζ μβ′ μ″ = 47° 42′ 40″. Also where there was no unit in
any particular denomination O was used, signifying ούδ μíα μοîρα, ούδ ν ξηκοστóν and the like; thus Ō α′ β″ O‴ = 0° 1′ 2″
0‴. Similarly, for the units representing the divisions of the radius the word τμήμαήματα or some equivalent was used, and the
fractions were represented as before; thus τμημάτων ξζ δ′ νε″ = 67 (units) 4′ 55″.

§ 2. Addition and Subtraction.
There is no doubt that, in writing down numbers for these purposes, the several powers of 10 were kept separate in a

manner corresponding practically to our system of numerals, and the hundreds, thousands, etc., were written in separate
vertical rows. The following would therefore be a typical form of a sum in addition;

and the mental part of the work would be the same for the Greek as for us.
Similarly a subtraction would be represented as follows:

§ 3. Multiplication.
A number of instances are given in Eutocius’ commentary on the Measurement of a circle , and the similarity to our

procedure is just as marked as in the above cases of addition and subtraction. The multiplicand is written first, and below it the
multiplier preceded by πí (= “into”). Then the highest power of 10 in the multiplier is taken and multiplied into the terms
containing the separate multiples of the successive powers of 10, beginning with the highest and descending to the lowest; after
which the next highest power of 10 in the multiplier is multiplied into the various denominations in the multiplicand in the same
order. The same procedure is followed where either or both of the numbers to be multiplied contain fractions. Two instances
from Eutocius are appended from which the whole probedure will be understood.



(1)

(2)

One instance of a similar multiplication of numbers involving fractions may be given from Heron (pp. 80, 81). It is only
one of many, and, for brevity, the Greek notation will be omitted. Heron has to find the product of  and , and proceeds
as follows:

The result is accordingly

The multiplication of 37° 4′ 55″ (in the sexagesimal system) by itself is performed by Theon of Alexandria in his
commentary on Ptolemy’s σύνταξις in an exactly similar manner.

§ 4. Division.
The operation of dividing by a number of one digit only was easy for the Greeks as for us, and what we call “long

division” was with them performed, mutatis mutandis, in the same way as now with the help of multiplication and subtraction.
Suppose, for instance, that the operation in the first case of multiplication given above had to be reversed and that 
(608,400) had to be divided by ψπ′ (780). The terms involving the different powers of 10 would be mentally kept separate as
in addition and subtraction, and the first question would be, how many times will 7 hundreds go into 60 myriads, due
allowance being made for the fact that the 7 hundreds have 80 behind them and that 780 is not far short of 8 hundreds? The
answer is 7 hundreds or ψ′, and this multiplied by the divisor ψπ′ (780) would give  (546,000) which, subtracted from 

 (608,400), leaves the remainder  (62,400). This remainder has then to be divided by 780 or a number approaching
8 hundreds, and 8 tens or π′ would have to be tried. In the particular case the result would then be complete, the quotient being
ψπ′ (780), and there being no remainder, since π′ (80) multiplied by ψπ′ (780) gives the exact figure  (62,400).

An actual case of long division where the dividend and divisor contain sexagesimal fractions is described by Theon. The
problem is to divide 1515 20′ 15″ by 25 12′ 10″, and Theon’s account of the process comes to this.



Thus the quotient is something less than 60 7′ 33″. It will be observed that the difference between this operation of Theon’s and
that followed in dividing  (608,400) by ψπ′ (780) as above is that Theon makes three subtractions for one term of the
quotient, whereas the remainder was arrived at in the other case after one subtraction. The result is that, though Theon’s
method is quite clear, it is longer, and moreover makes it less easy to foresee what will be the proper figure to try in the
quotient, so that more time would be apt to be lost in making unsuccessful trials.

§ 5. Extraction of the square root.
We are now in a position to see how the operation of extracting the square root would be likely to be attacked. First, as in

the case of division, the given whole number whose square root is required would be separated, so to speak, into
compartments each containing such and such a number of units and of the separate powers of 10. Thus there would be so many
units, so many tens, so many hundreds, etc., and it would have to be borne in mind that the squares of numbers from 1 to 9
would lie between 1 and 99, the squares of numbers from 10 to 90 between 100 and 9900, and so on. Then the first term of the
square root would be some number of tens or hundreds or thousands, and so on, and would have to be found in much the same
way as the first term of a quotient in a “long division,” by trial if necessary. If A is the number whose square root is required,
while a represents the first term or denomination of the square root and x the next term or denomination still to be found, it
would be necessary to use the identity (a + x)2 = a2 + 2ax + x2 and to find x so that 2ax + x2 might be somewhat less than the
remainder A − a2. Thus by trial the highest possible value of x satisfying the condition would be easily found. If that value were
b, the further quantity 2ab + b2 would have to be subtracted from the first remainder A − a2, and from the second remainder thus
left a third term or denomination of the square root would have to be derived, and so on. That this was the actual procedure
adopted is clear from a simple case given by Theon in his commentary on the σύνταξις. Here the square root of 144 is in
question, and it is obtained by means of Eucl. n. 4. The highest possible denomination (i.e. power of 10) in the square root is
10 ; 102 subtracted from 144 leaves 44, and this must contain not only twice the product of 10 and the next term of the square
root but also the square of that next term itself. Now, since 2 . 10 itself produces 20, the division of 44 by 20 suggests 2 as the
next term of the square root; and this turns out to be the exact figure required, since

2 . 20 + 22 = 44.

The same procedure is illustrated by Theon’s explanation of Ptolemy’s method of extracting square roots according to the
sexagesimal system of fractions. The problem is to find approximately the square root of 4500 μοîραι or degrees, and a
geometrical figure is used which makes clear the essentially Euclidean basis of the whole method. Nesselmann gives a
complete reproduction of the passage of Theon, but the following purely arithmetical representation of its purport will
probably be found clearer, when looked at side by side with the figure.

Ptolemy has first found the integral part of  to be 67. Now 672 = 4489, so that the remainder is 11. Suppose now that
the rest of the square root is expressed by means of the usual sexagesimal fractions, and that we may therefore put



where x, y are yet to be found. Thus x must be such that  is somewhat less than 11, or sc must be somewhat less than 

 or , which is at the same time greater than 4. On trial, it turns out that 4 will satisfy the conditions of the problem,

namely that  must be less than 4500, so that a remainder will be left by means of which y may be found.

Now  is the remainder, and this is equal to

Thus we must suppose that  approximates to , or that 8048y is approximately equal to 7424. 60.

Therefore y is approximately equal to 55. We have then to subtract

from the remainder  above found.

The subtraction of  from  gives , or ; but Theon does not go further and subtract the remaining 

, instead of which he merely remarks that the square of  approximates to . As a matter of fact, if we deduct

the  from , so as to obtain the correct remainder, it is found to be .

To show the power of this method of extracting square roots by means of sexagesimal fractions, it is only necessary to
mention that Ptolemy gives  as an approximation to , which approximation is equivalent to 1·7320509 in

the ordinary decimal notation and is therefore correct to 6 places.
But it is now time to pass to the question how Archimedes obtained the two approximations to the value of  which he

assumes in the Measurement of a circle . In dealing with this subject I shall follow the historical method of explanation
adopted by Hultsch, in preference to any of the mostly a priori theories which the ingenuity of a multitude of writers has
devised at different times.

§ 6. Early investigations of surds or incommensurables.
From a passage in Proclus’ commentary on Eucl. I.* we learn that it was Pythagoras who discovered the theory of

irrationals (  τ ν áλόγων πραγματεία). Further Plato says (Theaetetus 147 D), “On square roots this Theodorus [of Cyrene]
wrote a work in which he proved to us, with reference to those of 3 or 5 [square] feet that they are incommensurable in length
with the side of one square foot, and proceeded similarly to select, one by one, each [of the other incommensurable roots] as



far as the root of 17 square feet, beyond which for some reason he did not go.” The reason why  is not mentioned as an
incommensurable square root must be, as Cantor says, that it was before known to be such. We may therefore conclude that it
was the square root of 2 which was geometrically constructed by Pythagoras and proved to be incommensurable with the side
of a square in which it represented the diagonal. A clue to the method by which Pythagoras investigated the value of  is
found by Cantor and Hultsch in the famous passage of Plato (Rep. VIII. 546 B, C) about the ‘geometrical’ or ‘nuptial’ number.
Thus, when Plato contrasts the ητ  and áρρητος διάμετρος τ ς πεμπάδος, he is referring to the diagonal of a square whose
side contains five units of length; the áρρητος διάμετρος, or the irrational diagonal, is then  itself, and the nearest rational
number is , which is the ητ  διάμετρος. We have herein the explanation of the way in which Pythagoras must have
made the first and most readily comprehensible approximation to ; he must have taken, instead of 2, an improper fraction
equal to it but such that the denominator was a square in any case, while the numerator was as near as possible to a complete
square. Thus Pythagoras chose , and the first approximation to  was accordingly , it being moreover obvious that 

. Again, Pythagoras cannot have been unaware of the truth of the proposition, proved in Eucl. II. 4, that (a + b)2 = a2 + 2ab +
b2, where a, b are any two straight lines, for this proposition depends solely upon propositions in Book I. which precede the
Pythagorean proposition I. 47 and which, as the basis of I. 47, must necessarily have been in substance known to its author. A
slightly different geometrical proof would give the formula (a − b)2 = a2 − 2ab + b2, which must have been equally well known
to Pythagoras. It could not therefore have escaped the discoverer of the first approximation  for  that the use of the
formula with the positive sign would give a much nearer approximation, viz. , which is only greater than  to the

extent of . Thus we may properly assign to Pythagoras the discovery of the fact represented by

The consequential result that  is used by Aristarchus of Samos in the 7th proposition of his work On the

size and distances of the sun and moon*.
With reference to the investigations of the values of , , , ……  by Theodoras, it is pretty certain that  was

geometrically represented by him, in the same way as it appears afterwards in Archimedes, as the perpendicular from an
angular point of an equilateral triangle on the opposite side. It would thus be readily comparable with the side of the “1 square
foot” mentioned by Plato. The fact also that it is the side of three square feet (τρίπους δύναμις) which was proved to be
incommensurable suggests that there was some special reason in Theodoras’ proof for specifying feet, instead of units of length
simply; and the explanation is probably that Theodoras subdivided the sides of his triangles in the same way as the Greek foot
was divided into halves, fourths, eighths and sixteenths. Presumably therefore, exactly as Pythagoras had approximated to 
by putting  for 2, Theodoras started from the identity . It would then be clear that

To investigate  further, Theodorus would put it in the form , as Pythagoras put  into the form , and
the result would be

We know of no further investigations into incommensurable square roots until we come to Archimedes.

§ 7. Archimedes’ approximations to .
Seeing that Aristarchus of Samos was still content to use the first and very rough approximation to  discovered by

Pythagoras, it is all the more astounding that Aristarchus’ younger contemporary Archimedes should all at once, without a
word of explanation, give out that

as he does in the Measurement of a circle.
In order to lead up to the explanation of the probable steps by which Archimedes obtained these approximations, Hultsch



adopts the same method of analysis as was used by the Greek geometers in solving problems, the method, that is, of supposing
the problem solved and following out the necessary consequences. To compare the two fractions  and , we first divide

both denominators into their smallest factors, and we obtain

We observe also that 2.2.13 = 52, while 3.17 = 51, and we may therefore show the relations between the numbers thus,

For convenience of comparison we multiply the numerator and denominator of  by 5 ; the two original fractions are then

so that we can put Archimedes’ assumption in the form

and this is seen to be equivalent to

Now , and the latter expression is an approximation to .

We have then

As  was compared with 15 , and we want an approximation to  itself, we divide by 15 and so obtain

But , and it follows

that

The lower limit for  was given by

and a glance at this suggests that it may have been arrived at by simply substituting (52 − 1) for 52.
Now as a matter of fact the following proposition is true. If a2 ± b is a whole number which is not a square, while a2 is the

nearest square number (above or below the first number, as the case may be), then

Hultsch proves this pair of inequalities in a series of propositions formulated after the Greek manner, and there can be little
doubt that Archimedes had discovered and proved the same results in substance, if not in the same form. The following
circumstances confirm the probability of this assumption.

(1) Certain approximations given by Heron show that he knew and frequently used the formula

(where the sign ∼ denotes “is approximately equal to”).



Thus he gives

(2) The formula , is used by the Arabian Alkarkhī (11th century) who drew from Greek sources

(Cantor, p. 719 sq.).
It can therefore hardly be accidental that the formula

gives us what we want in order to obtain the two Archimedean approximations to , and that in direct connexion with one
another*.

We are now in a position to work out the synthesis as follows. From the geometrical representation of  as the
perpendicular from an angle of an equilateral triangle on the opposite side we obtain  and, as a first approximation,

Using our formula we can transform this at once into

Archimedes would then square , or , and would obtain , which he would compare with 3, or ; i.e. he would

put  =  and would obtain

To obtain a still nearer approximation, he would proceed in the same manner and compare , or , with 3, or ,

whence it

would appear that

and therefore that

that is,

The application of the formula would then give the result

that is,

The complete result would therefore be

Thus Archimedes probably passed from the first approximation  to , from  to , and from  directly to , the

closest approximation of all, from which again he derived the less close approximation . The reason why he did not

proceed to a still nearer approximation than  is probably that the squaring of this fraction would have brought in numbers

much too large to be conveniently used in the rest of his calculations. A similar reason will account for his having started from 



 instead of ; if he had used the latter, he would first have obtained, by the same method, , and thence 

, or  > ; the squaring of  would have given , and the corresponding approximation would

have given , where again the numbers are inconveniently large for his purpose.

§ 8. Approximations to the square roots of large numbers.
Archimedes gives in the Measurement of a circle the following approximate values:
(1)
(2)
(3)
(4)
(5)
(6)
(7)

There is no doubt that in obtaining the integral portion of the square root of these numbers Archimedes used the method
based on the Euclidean theorem (a + b)2 = a2 + 2ab + b2 which has already been exemplified in the instance given above from
Theon, where an approximation to  is found in sexagesimal fractions. The method does not substantially differ from that
now followed; but whereas, to take the first case, , we can at once see what will be the number of digits in the
square root by marking off pairs of digits in the given number, beginning from the end, the absence of a sign for 0 in Greek
made the number of digits in the square root less easy to ascertain because, as written in Greek, the number  only
contains six signs representing digits instead of seven. Even in the Greek notation however it would not be difficult to see that,
of the denominations, units, tens, hundreds, etc. in the square root, the units would correspond to κα′ in the original number, the
tens to ,βτ, the hundreds to , and the thousands to . Thus it would be clear that the square root of 9082321 must be of the
form

1000x + 100y + 10z + w,

where x, y, z, w can only have one or other of the values 0, 1, 2,… 9. Supposing then that x is found, the remainder N −
(1000x)2, where N is the given number, must next contain 2.1000x. 100y and (100y)2, then 2 (1000x + 100y). 10z and (10)2,
after which the remainder must contain two more numbers similarly formed.

In the particular case (1) clearly x = 3. The subtraction of (3000)2 leaves 82321, which must contain 2. 3000. 100y. But,
even if y is as small as 1, this product would be 600,000, which is greater than 82321. Hence there is no digit representing
hundreds in the square root. To find z, we know that 82321 must contain

2. 3000.10z + (10z)2,

and z has to be obtained by dividing 82321 by 60,000. Therefore z = 1. Again, to find w, we know that the remainder

(82321 − 2.3000.10 − 102),

or 22221, must contain 2 . 3010w + w2, and dividing 22221 by 2.3010 we see that w = 3. Thus 3013 is the integral portion of
the square root, and the remainder is 22221 −(2 . 3010. 3 + 32), or 4152.

The conditions of the proposition now require that the approximate value to be taken for the square root must not be less
than the real value, and therefore the fractional part to be added to 3013 must be if anything too great. Now it is easy to see that
the fraction to be added is greater than  because  is less than the remainder 4152. Suppose then that the

number required (which is nearer to 3014 than to 3013) is , and  has to be if anything too small.

Now

whence 9082321 = (3014)2 − 1875.



By applying Archimedes’ formula , we obtain

The required value  has therefore to be not greater than . It remains to be explained why Archimedes put for  the

value  which is equal to . In the first place, he evidently preferred fractions with unity for numerator and some power of

2 for denominator because they contributed to ease in working, e.g. when two such fractions, being equal to each other, had to
be added. (The exceptions, the fractions  and , are to be explained by exceptional circumstances presently to be

mentioned.) Further, in the particular case, it must be remembered that in the subsequent work 2911 had to be added to 3014 − 
 and the sum divided by 780, or 2. 2. 3. 5.13. It would obviously lead to simplification if a factor could be divided out, e.g.

the best for the purpose, 13. Now, dividing 2911 + 3014, or 5925, by 13, we obtain the quotient 455, and a remainder 10, so
that 10 −  remains to be divided by 13. Therefore  has to be so chosen that 10q − p is divisible by 13, while  approximates

to, but is not greater than, . The solution p = 1, q = 4 would therefore be natural and easy.

The usual process for extraction of the square root gave as the integral part of it 1838, and as the remainder 2685. As
before, it was easy to see that the exact root was nearer to 1839 than to 1838, and that

The Archimedean formula then gave

It could not have escaped Archimedes that  was a near approximation to  or , since  = ; and  would have

satisfied the necessary condition that the fraction to be taken must be less than the real value. Thus it is clear that, in taking 

as the approximate value of the fraction, Archimedes had in view the simplification of the subsequent work by the elimination
of a factor. If the fraction be denoted by , the sum of 1839 −  and 1823, or 3662 − , had to be divided by 240, i.e. by 6.40.

Division of 3662 by 40 gave 22 as remainder, and then p, q had to be so chosen that 22 −  was conveniently divisible by 40,

while  was less than but approximately equal to . The solution p − 2, q = 11 was easily seen to satisfy the conditions.

(3) 

The usual procedure gave 1018405 = 10092 + 324 and the ap proximation

It was here necessary that the fraction to replace  should be greater but approximately equal to it, and  satisfied the

conditions while the subsequent work did not require any change in it.

(4)
The usual process gave ; it followed that

and 2017  was an obvious value to take as an approximation somewhat greater than the left side of the inequality.



(5)
In the case of this and the two following roots an approximation had to be obtained which was less, instead of greater, than

the true value. Thus Archimedes had to use the second part of the formula

In the particular case of  the integral part of the root is 591, and the remainder is 169. This gave the result

and since 169 = 132, while 2.591 + 1 = 7.132, it resulted without further calculation that

Why then did Archimedes take, instead of this approximation, another which was not so close, viz. 591 ? The answer
which the subsequent working and the other approximations in the first part of the proof suggest is that he preferred, for
convenience of calculation, to use for his approximations fractions of the form  only. But he could not have failed to see that

to take the nearest fraction of this form, , instead of  might conceivably affect his final result and make it less near the truth

than it need be. As a matter of fact, as Hultsch shows, it does not affect the result to take 591  and to work onwards from that
figure. Hence we must suppose that Archimedes had satisfied himself, by taking 591  and proceeding on that basis for some
distance, that he would not be introducing any appreciable error in taking the more convenient though less accurate
approximation 591 .

(6)
In this case the integral portion of the root is 1172, and the remainder . Thus, if R denote the root,

Now 2.1172 + 1 = 2345; the fraction accordingly becomes , and  satisfies the necessary conditions, viz. that it

must be approximately equal to, but not greater than, the given fraction. Here again Archimedes would have taken  as the
approximate value but that, for the same reason as in the last case,  was more convenient.

(7)
The integral portion of the root is here 2339, and the remainder 1211 , so that, if R is the exact root,

A few words may be added concerning Archimedes’ ultimate reduction of the inequalities

to the simpler result

As a matter of fact , so the first fraction it was only necessary to make the small change of diminishing the

denominator by 1 in order to obtain the simple .



As regards the lower limit for π, we see that ; and Hultsch ingeniously suggests the method of trying the

effect of increasing the denominator of the latter fraction by 1. This produces  or ; and if we divide 2690 by 379, the

quotient is between 7 and 8, so that

Now it is a known proposition (proved in Pappus VII. p. 689) that, if , then

Similarly it may be proved that

It follows in the above case that

which exactly gives

and  very much nearer to  than  is.

Note on alternative hypotheses with regard to the approximations to .

For a description and examination of all the various theories put forward, up to the year 1882, for the purpose of explaining
Archimedes’ approximations to  the reader is referred to the exhaustive paper by Dr Siegmund Günther, entitled Die
qicadratischen Irrationalitäten der Alten und deren Entwickelungsmethoden (Leipzig, 1882). The same author gives further
references in his Abriss der Geschichte der Mathematik und der Natur-wissenschaften im Altertum forming an Appendix to
Vol. v. Pt. 1 of I wan von Muller’s Handbuch der klassischen Altertums-wissenschaft (München, 1894).

Günther groups the different hypotheses under three general heads:

(1) those which amount to a more or less disguised use of the method of continued fractions and under which are included
the solutions of De Lagny, Mollweide, Hauber, Buzengeiger, Zeuthen, P. Tannery (first solution), Heilermann;

(2) those which give the approximations in the form of a series of fractions such as  under this

class come the solutions of Kadicke, v. Pessl, Kodet (with reference to the Çulvasūtras), Tannery (second solution);
(3) those which locate the incommensurable surd between a greater and lesser limit and then proceed to draw the limits

closer and closer. This class includes the solutions of Oppermann, Alexejeff, Schönborn, Hunrath, though the first two are also
connected by Günther with the method of continued fractions.

Of the methods so distinguished by Günther only those need be here referred to which can, more or less, claim to rest on a
historical basis in the sense of representing applications or extensions of principles laid down in the works of Greek
mathematicians other than Archimedes which have come down to us. Most of these quasi-historical solutions connect
themselves with the system of side- and diagonal-numbers (πλ νρικoì and διαμ τρικoì áιθμoì) explained by Theon of Smyrna
(c. 130 A.D.) in a work which was intended to give so much of the principles of mathematics as was necessary for the study of
the works of Plato.

The side- and diagonal-numbers are formed as follows. We start with two units, and (a) from the sum of them, (b) from the
sum of twice the first unit and once the second, we form two new numbers; thus

1 . 1 + 1 = 2, 2 . 1 + 1 = 3.

Of these numbers the first is a side- and the second a diagonal-number respectively, or (as we may say)

a2 = 2, d2 = 3.

In the same way as these numbers were formed from a1 = 1, d1 = 1, successive pairs of numbers are formed from a2, d2, and so
on, in accordance with the formula

an+1 = an + dn, dn+1 = 2an + dn,



whence we have

and so on.
Theon states, with reference to these numbers, the general proposition which we should express by the equation

dn
2 = 2an

2 ± 1 .

The proof (no doubt omitted because it was well-known) is simple. For we have

while d1
2 − 2a1

2 = − 1 ; whence the proposition is established.
Cantor has pointed out that any one familiar with the truth of this proposition could not have failed to observe that, as the

numbers were successively formed, the value of dn
2/an

2 would approach more and more nearly to 2, and consequently the
successive fractions dn/an would give nearer and nearer approximations to the value of , or in other words that

are successive approximations to . It is to be observed that the third of these approximations, , is the Pythagorean

approximation which appears to be hinted at by Plato, while the above scheme of Theon, amounting to a method of finding all
the solutions in positive integers of the indeterminate equation

2x2 − y2 = ± 1

and given in a work designedly introductory to the study of Plato, distinctly suggests, as Tannery has pointed out, the
probability that even in Plato’s lifetime the systematic investigation of the said equation had already begun in the Academy. In
this connexion Proclus’ commentary on Eucl. I. 47 is interesting. It is there explained that in isosceles right-angled triangles “it
is not possible to find numbers corresponding to the sides; for there is no square number which is double of a square except in
the sense of approximately double, e.g. 72 is double of 52 less 1.” When it is remembered that Theon’s process has for its
object the finding of any number of squares differing only by unity from double the squares of another series of numbers
respectively, and that the sides of the two sets of squares are called diagonal- and swfe-numbers respectively, the conclusion
becomes almost irresistible that Plato had such a system in mind when he spoke of ητ  διάμ τρος(irational diagonal) as
compared with áρρητoς διάμ τρος (irrational diagonal) τ ς π μπάδος (cf. p. lxxviii above).

One supposition then is that, following a similar line to that by which successive approximations to  could be obtained
from the successive solutions, in rational numbers, of the indeterminate equations 2x2 − y2 = ±1, Archimedes set himself the
task of finding all the solutions, in rational numbers, of the two indeterminate equations bearing a similar relation to , viz.

Zeuthen appears to have been the first to connect, eo nomine, the ancient approximations to  with the solution of these
equations, which are also made by Tannery the basis of his first method. But, in substance, the same method had been used as
early as 1723 by De Lagny, whose hypothesis will be, for purposes of comparison, described after Tannery’s which it so
exactly anticipated.

Zeuthen’s solution.
After recalling the fact that, even before Euclid’s time, the solution of the indeterminate equation x2 + y2 = z2 by means of

the substitutions



was well known, Zeuthen concludes that there could have been no difficulty in deducing from Eucl. II. 5 the identity

from which, by multiplying up, it was easy to obtain the formula

3(2mn)2 + (m2 − 3n2)2 = (m2 + 3n2)2.

If therefore one solution m2 − 3n2 = 1 was known, a second could at once be found by putting

x = m2 + 3n2, y = 2mn.

Now obviously the equation

m2 − 3n2 = 1

is satisfied by the values m = 2, n = 1; hence the next solution of the equation

x2 − 3y2 = 1

is x1 = 22 + 3.1 = 7, y1 = 2 .2 .1 = 4;
and, proceeding in like manner, we have any number of solutions as

and so on.
Next, addressing himself to the other equation

x2 − 3y2 = − 2,

Zeuthen uses the identity

(m + 3n)2 − 3(m + n)2 = −(m2 − 3n2).

Thus, if we know one solution of the equation m2 − 3n2 = 1, we can proceet to substitute

x = m + 3n, y = m + n.

Suppose m = 2, n = 1, as before ; we then have

x1 = 5, y1 = 3.

If we put x2 = x1 + 3y1 = 14, y2 = x1 + y1 = 8, we obtain

(and m = 7, n = 4 is seen to be a solution of m2 − 3n2 = 1).
Starting again from x2, y2, we have

x3 = 38, y3 = 22,

and

(m = 19, n = 11 being a solution of the equation m2 − 3n2 = −2);

x4 = 104, y4 = 60.

whence



(and m = 26, n = 15 satisfies m2 − 3n2 = 1),

x5 = 284, y5 = 164.

or

Similarly , and so on.

This method gives all the successive approximations to , taking account as it does of both the equations

x2 − 3y2 = 1,

x2 − 3y2 = −2,

Tannery’s first solution.
Tannery asks himself the question how Diophantus would have set about solving the two indeterminate equations. He takes

the first equation in the generalised form

x2 − ay2 = 1,

and then, assuming one solution (p, q) of the equation to be known, he supposes

p1 = mx − p, q1 = x + q.

Then p2
1 − aq1

2 ≡ m2x2 − 2 mpx + p2 − ax2−2aqx − aq2=1,

whence, since p2 − aq2 = 1, by hypothesis,

so that

and p1
2 − aq1

2 = 1.
The values of p1, q1 so found are rational but not necessarily integral; if integral solutions are wanted, we have only to put

p1 = (u2 + av2) p + 2auvq, q1 = 2puv + (u2+ av2) q,

where (u, v) is another integral solution of x2 − ay2 = 1.
Generally, if (p, q) be a known solution of the equation

x2 −ay2 = r,

suppose p1 = ap + βq, q1 = γp + δq, and “il suffit pour déterminer α, β, γ, δ de connaître les trois groupes de solutions les plus
simples et de résoudre deux couples d’équations du premier degré à deux inconnues.” Thus (1) for the eauation

x2 − 3y2 = 1,

the first three solutions are

(p = l, q = 0), (p = 2, q = 1), (p = 7 ,q = 4),

whence

so that α = 2, β = 3, γ = 1, δ = 2,
and it follows that the fourth solution is given by

(2) for the equation x2 − 3y2 = − 2,
the first three solutions being (1, 1), (5, 3), (19, 11), we have



whence α = 2, β = 3, γ = 1, δ = 2, and the next solution is given by

and so on.
Therefore, by using the two indeterminate equations and proceeding as shown, all the successive approximations to  can

be found.
Of the two methods of dealing with the equations it will be seen that Tannery’s has the advantage, as compared with

Zeuthen’s, that it can be applied to the solution of any equation of the form x2 − ay2 = r.

De Lagny’s method.

The argument is this. If  could be exactly expressed by an improper fraction, that fraction would fall between 1 and 2,
and the square of its numerator would be three times the square of its denominator. Since this is impossible, two numbers have
to be sought such that the square of the greater differs as little as possible from 3 times the square of the smaller, though it may
be either greater or less. De Lagny then evolved the following successive relations,

From these relations were derived a series of fractions greater than , viz. , etc., and another series of fractions

less than , viz. , etc. The law of formation was found in each case to be that, if  was one fraction in the series

and  the next, then

This led to the results

while the law of formation of the successive approximations in each series is precisely that obtained by Tannery as the result
of treating the two indeterminate equations by the Diophantine method.

Heilennanris method.

This method needs to be mentioned because it also depends upon a generalisation of the system of side- and diagoiial-
numbers given by Theon of Smyrna.

Theon’s rule of formation was

Sn = Sn−1 + Dn−1, Dn = 2Sn−1 + Dn−1

and Heilermann simply substitutes for 2 in the second relation any arbitrary number a, developing the following scheme,

It follows that



By subtraction,

This corresponds to the most general form of the “Pellian” equation

x2 − ay2 = (const.).

If now we put D0 = S0 = 1, we have

from which it appears that, where the fraction on the right-hand side approaches zero as n increases,  is an approximate

value for .
Clearly in the case where a = 3, D0 = 2, S = 1 we have

and so on.
But the method is, as shown by Heilermann, more rapid if it is used to find, not , but b , where b is so chosen as to

make b2a (which takes the place of a) somewhat near to unity. Thus suppose a = , so that , and we then have

(putting D0 = S0 = 1)

and

This is one of the very few instances of success in bringing out the two Archimedean approximations in immediate sequence
without any foreign values intervening. No other methods appear to connect the two values in this direct way except those of
Hunrath and Hultsch depending on the formula

We now pass to the second class of solutions which develops the approximations in the form of the sum of a series of
fractions, and under this head comes

Tannery’s second method.

This may be exhibited by means of its application (1) to the case of the square root of a large number, e.g. 
, the first of the kind appearing in Archimedes, (2) to the case of .

(1) Using the formula

we try the effect of putting for  the expression



It turns out that this gives correctly the integral part of the root, and we now suppose the root to be

Squaring and regarding  as negligible, we have

whence

and

so that

(2) Bearing in mind that

we have

Assuming then that , squaring and neglecting , we obtain

whence m = 15, and we get as the second approximation

We have now 262 − 3. 152 = 1,
and can proceed to find other approximations by means of Tannery’s first method.

Or we can also put

and, neglecting , we get

whence n = −15.52 = − 780, and

It is however to be observed that this method only connects  with  and not with the intermediate approximation ,

to obtain which Tannery implicitly uses a particular case of the formula of Hunrath and Hultsch.
Rodet’s method was apparently invented to explain the approximation in the Çulvasūtras*

but, given the approximation , the other two successive approximations indicated by the formula can be obtained by the
method of squaring just described* without such elaborate work as that of Rodet, which, when applied to , only gives the
same results as the simpler method.

Lastly, with reference to the third class of solutions, it may be mentioned
(1) that Oppermann used the formula



which gave successively

but only led to one of the Archimedean approximations, and that by combining the last two ratios, thus

(2) that Schönborn came somewhat near to the formula successfully used by Hunrath and Hultsch when he proved † that

* In writing this chapter I have been under particular obligations to Hultsch’s articles Arithmetica and Archimedes in Pauly-Wissowa’s Real-Encyclopadie, n. 1, as
well as to the same scholar’s articles (1) Die Näherungswerthe irrationaler Quadratwurzeln bei Archimedes  in the Nachrichten von der kgl. Gesellschaft der
Wissenschaften zu Göttingen  (1893), pp. 367 sqq., and (2) Zur Kreismessung des Archimedes  in the Zeitschrift für Math. u. Physik  (Hist. litt. Abtheilung) xxxix.
(1894), pp. 121 sqq. and 161 sqq. I have also made use, in the earlier part of the chapter, of Nesselmann’s work Die Algebra der Griechen and the histories of Cantor
and Gow.

* Diophantus denoted myriads followed by thousands by the ordinary signs for numbers of units, only separating them by a dot from the thousands. Thus for 3,069,000
he writes τς., θ and λ.,αψος for 331,776. Sometimes myriads were represented by the ordinary letters with two dots above, as  = 100 myriads (1,000,000), and myriads of
myriads with two pairs of dots, as ï for 10 myriad- myriads (1,000,000,000).

* Diophantus has a general method of expressing fractions which is the exact reverse of modem practice; the denominator is written above the numerator, thus 
, and  = 1,270,568/10,816. Sometimes he writes down the numerator and then introduces the denominator with ν μορíψ or μορίου, e.g.

τς. ,θ μορ . λγ . ,αψος = 3,069,000/331,776.
* p. 65 (ed. Friedlein).
* Part of the proof of this proposition was a sort of foretaste of the first part of Prop. 3 of Archimedes’ Measurement of a circle, and the substance of it is accordingly

appended as reproduced by Hultsch.
ABEK is a square, KB a diagonal, ∠HBE =  ∠KBE, ∠FBE = 3°, and AC is perpendicular to BF so that the triangles ACB, BEF are similar.
Aristarchus seeks to prove that AB : BC > 18 :1.

If R denote a right angle, the angles KBE, HBE, FBE are respectively .

• Then HE : FE > ∠HBE : ∠FBE.
[This is assumed as a known lemma by Aristarchus as well as Archimedes.]
Therefore

Now, by construction, BK2= 2BE2.
Also [Eucl. VI. 3] BK : BE = KH : HE ;

whence KH = HE.

And, since

KH : KE > 7 : 5,
so that

From (α) and (β), ex aequali,
KE : FE > 18 : 1.

Therefore, since BF > BE (or KE),
BF : FE > 18 : 1,

so that, by similar triangles,
AB : BC > 18 : 1.

* Most of the a priori theories as to the origin of the approximations are open to the serious objection that, as a rule, they give series of approximate values in which the
two now in question do not follow consecutively, but are separated by others which do not appear in Archimedes. Hultsch’s explanation is much preferable as being free



from this objection. But it is fair to say that the actual formula used by Hultsch appears in Hunrath’s solution of the puzzle (Die Berechnung irrationaler
Quadratwurzeln vor der Herrschaft der Decimal-brüche, Kiel, 1884, p. 21; cf. Ueber das Ausziehen der Quadrativurzel bei Griechen und Indern, Hadersleben,
1883), and the same formula is implicitly used in one of the solutions suggested by Tannery (Sur la mesure du cercle d’Archimède  in Mémoires de la société des
sciences physiques et naturelles de Bordeaux, 2e série, IV. (1882), p. 313-337).

* See Cantor, Vorlesunger über Gesch. d. Math. p. 600 sq
* Cantor had already pointed this out in his first edition of 1880.
† Zeitschrift fü Math. u. Physik  (Hist. litt. Abtheilung) XXVII. (1883), p. 169 sq.



CHAPTER V.

ON THE PROBLEMS KNOWN AS NEϒΣEIΣ.

THE word ν σις, commonly inclinatio in Latin, is difficult to translate satisfactorily, but its meaning will be gathered from
some general remarks by Pappus having reference to the two Books of Apollonius entitled ν ύσ ις (now lost). Pappus says *,
“A line is said to verge (ν ύ ιν) towards a point if, being produced, it reach the point,” and he gives, among particular cases of
the general form of the problem, the following.

“Two lines being given in position, to place between them a straight line given in length and verging towards a given
point.”

“If there be given in position (1) a semicircle and a straight line at right angles to the base, or (2) two semicircles with
their bases in a straight line, to place between the two lines a straight line given in length and verging towards a corner
(γωνίαν) of a semicircle.”

Thus a straight line has to be laid across two lines or curves so that it passes through a given point and the intercept on it
between the lines or curves is equal to a given length †.

§ 1. The following allusions to particular ν ύσ ις are found in Archimedes. The proofs of Props. 5, 6, 7 of the book On
Spirals use respectively three particular cases of the general theorem that, if A be any point on a circle and BC any diameter,
it is possible to draw through A a straight line, meeting the circle again in P and BC produced in R, such that the intercept
PR is equal to any given length. In each particular case the fact is merely stated as true without any explanation or proof, and

(1) Prop. 5 assumes the case where the tangent at A is parallel to BC,
(2) Prop. 6 the case where the points A, P in the figure are interchanged,
(3) Prop. 7 the case where A, P are in the relative positions shown in the figure.

Again, (4) Props. 8 and 9 each assume (as before, without proof, and without giving any solution of the implied problem)
that, if AE, BC be two chords of a circle intersecting at right angles in a point D such that BD > DC, then it is possible to
draw through A another line ARP, meeting BC in R and the circle again in P, such that PR = DE.

Lastly, with the assumptions in Props. 5, 6, 7 should be compared Prop. 8 of the Liber Assumptorum, which may well be
due to Archimedes, whatever may be said of the composition of the whole book. This proposition proves that, if in the first
figure APR is so drawn that PR is equal to the radius OP, then the arc AB is three times the arc PC. In other words, if an arc
AB of a circle be taken subtending any angle at the centre O, an arc equal to one-third of the given arc can be found, i.e. the
given angle can be trisected, if only APR can be drawn through A in such a manner that the intercept PR between the circle
and BO produced is equal to the radius of the circle. Thus the trisection of an angle is reduced to a ν σ ις exactly similar to
those assumed as possible in Props. 6, 7 of the book On Spirals.



The ν σ ις so referred to by Archimedes are not, in general, capable of solution by means of the straight line and circle
alone, as may be easily shown. Suppose in the first figure that x represents the unknown length OR, where O is the middle point
of BC, and that k is the given length to which PR is to be equal; also let OD = a, AD = b, BC = 2c. Then, whether BC be a
diameter or (more generally) any chord of the circle, we have

A R . RP = BR . RC,

and therefore
The resulting equation, after rationalisation, is an equation of the fourth degree in x; or, if we denote the length of AR by y, we
have, for the determination of x and y, the two equations

In other words, if we have a rectangular system of coordinate axes, the values of x and y satisfying the conditions of the
problem can be determined as the coordinates of the points of intersection of a certain rectangular hyperbola and a certain
parabola.

In one particular case, that namely in which D coincides with O the middle point of BC, or in which A is one extremity of
the diameter bisecting BC at right angles, a = 0, and the equations reduce to the single equation

y2 − ky = b2 + c2,

which is a quadratic and can be geometrically solved by the traditional method of application of areas; for, if u be substituted
for y − k, so that u = AP. the equation becomes

u (k + u) = b2 + c2,

and we have simply “to apply to a straight line of length k a rectangle exceeding by a square figure and equal to a given area
(b2 + c2).”

The other ν σ ις referred to in Props. 8 and 9 can be solved in the more general form where k, the given length to which
PR is to be equal, has any value within a certain maximum and is not necessarily equal to DE, in exactly the same manner; and
the two equations corresponding to (a) will be for the second figure

Here, again, the problem can be solved by the ordinary method of application of areas in the particular case where AE is
the diameter bisecting BC at right angles; and it is interesting to note that this particular case appears to be assumed in a
fragment of Hippocrates’ Quadrature of lunes preserved in a quotation by Simplicius* from Eudemus’ History of Geometry,
while Hippocrates flourished probably as early as 450 B.C.

Accordingly we find that Pappus distinguishes different classes of ν ύσ ις corresponding to his classification of
geometrical problems in general. According to him, the Greeks distinguished three kinds of problems, some being plane, others
solid, and others linear. He proceeds thus†: “Those which can be solved by means of a straight line and a circumference of a
circle may properly be called plane ( πίπ δα); for the lines by means of which such problems are solved have their origin in a
plane. Those however which are solved by using for their discovery ( ύρ σιν) one or more of the sections of the cone have
been called solid (στ ρ á); for the construction requires the use of surfaces of solid figures, namely, those of cones. There
remains a third kind of problem, that which is called linear (γραμμικóν); for other lines [curves] besides those mentioned are
assumed for the construction whose origin is more complicated and less natural, as they are generated from more irregular
surfaces and intricate movements.” Among other instances of the linear class of curves Pappus mentions spirals, the curves
known as quadratrices, conchoids and cissoids. He adds that “it seems to be a grave error which geometers fall into whenever
any one discovers the solution of a plane problem by means of conics or linear curves, or generally solves it by means of a
foreign kind, as is the case, for example, (1) with the problem in the fifth Book of the Conics of Apollonius relating to the
parabola ‡, and (2) when Archimedes assumes in his work on the spiral a ν σις of a solid character with reference to a circle;
for it is possible without calling in the aid of anything solid to find the [proof of the] theorem given by the latter [Archimedes],
that is, to prove that the circumference of the circle arrived at in the first revolution is equal to the straight line drawn at right
angles to the initial line to meet the tangent to the spiral.”

The “solid ν σις” referred to in this passage is that assumed to be possible in Props. 8 and 9 of the book On Spirals, and
is mentioned again by Pappus in another place where he shows how to solve the problem by means of conics*. This solution
will be given later, but, when Pappus objects to the procedure of Archimedes as unorthodox, the objection appears strained if



we consider what precisely it is that Archimedes assumes. It is not the actual solution which is assumed, but only its
possibility; and its possibility can be perceived without any use of conics. For in the particular case it is only necessary, as a
condition of possibility, that DE in the second figure above should not be the maximum length which the intercept PR could
have as APR revolves about A from the position ADE in the direction of the centre of the circle; and that DE is not the maximum
length which PR can have is almost self-evident. In fact, if P, instead of moving along the circle, moved along the straight line
through E parallel to BC, and if ARP moved from the position ADE in the direction of the centre, the length of PR would
continually increase, and a fortiori, so long as P is on the arc of the circle cut off by the parallel through E to BC, PR must be
greater in length than DE; and on the other hand, as ARP moves further in the direction of B, it must sometime intercept a length
PR equal to DE before P reaches B, when PR vanishes. Since, then, Archimedes’ method merely depends upon the theoretical
possibility of a solution of the ν σις, and this possibility could be inferred from quite elementary considerations, he had no
occasion to use conic sections for the purpose immediately in view, and he cannot fairly be said to have solved a plane
problem by the use of conics.

At the same time we may safely assume that Archimedes was in possession of a solution of the ν σις referred to. But there
is no evidence to show how he solved it, whether by means of conics, or otherwise. That he would have been able to effect the
solution, as Pappus does, by the use of conics cannot be doubted. A precedent for the introduction of conics where a “solid
problem” had to be solved was at hand in the determination of two mean proportionals between two unequal straight lines by
Menaechmus, the inventor of the conic sections, who used for the purpose the intersections of a parabola and a rectangular
hyperbola. The solution of the cubic equation on which the proposition On the Sphere and Cylinder II. 4 depends is also
effected by means of the intersections of a parabola with a rectangular hyperbola in the fragment given by Eutocius and by him
assumed to be the work of Archimedes himself*.

Whenever a problem did not admit of solution by means of the straight line and circle, its solution, where possible, by
means of conics was of the greatest theoretical importance. First, the possibility of such a solution enabled the problem to be
classified as a “solid problem”; hence the importance attached by Pappus to solution by means of conics. But, secondly, the
method had other great advantages, particularly in view of the requirement that the solution of a problem should be
accompanied by a διορισμóς giving the criterion for the possibility of a real solution. Often too the διορισμóς involved (as
frequently in Apollonius) the determination of the number of solutions as well as the limits for their possibility. Thus, in any
case where the solution of a problem depended on the intersections of two conics, the theory of conics afforded an effective
means of investigating διoρισμoí.

§ 2. But though the solution of “solid problems” by means of conics had such advantages, it was not the only method open
to Archimedes. An alternative would be the use of some mechanical construction such as was often used by the Greek
geometers and is recognised by Pappus himself as a legitimate substitute for conics, which are not easy to draw in a plane†.
Thus in Apollonius’ solution of the problem of the two mean proportionals as given by Eutocius a ruler is supposed to be
moved about a point until the points at which the ruler crosses two given straight lines at right angles are equidistant from a
certain other fixed point; and the same construction is also given under Heron’s name. Another version of Apollonius’ solution
is that given by Ioannes Philoponus, which assumes that, given a circle with diameter OC and two straight lines OD, OE
through O and at right angles to one another, a line can be drawn through C, meeting the circle again in F and the two lines in
D, E respectively, such that the intercepts CD, FE are equal. This solution was no doubt discovered by means of the
intersection of the circle with a rectangular hyperbola drawn with OD, OE as asymptotes and passing through C; and this
supposition accords with Pappus’ statement that Apollonius solved the problem by means of the sections of the cone*. The
equivalent mechanical construction is given by Eutocius as that of Philo Byzantinus, who turns a ruler about C until CD, FE are
equal†.

Now clearly a similar method could be used for the purpose of effecting a ν σις. We have only to suppose a ruler (or any
object with a straight edge) with two marks made on it at a distance equal to the given length which the problem requires to be
intercepted between two curves by a line passing through the fixed point; then, if the ruler be so moved that it always passes
through the fixed point, while one of the marked points on it follows the course of one of the curves, it is only necessary to
move the ruler until the second marked point falls on the other curve. Some such operation as this may have led Nicomedes to
the discovery of his curve, the conchoid, which he introduced (according to Pappus) into his doubling of the cube, and by
which he also trisected an angle (according to the same authority). From the fact that Nicomedes is said to have spoken
disrespectfully of Eratosthenes’ mechanical solution of the duplication problem, and therefore must have lived later than
Eratosthenes, it is concluded that his date must have been subsequent to 200 B.C., while on the other hand he must have written
earlier than 70 B.C., since Geminus knew the name of the curve about that date; Tannery places him between Archimedes and
Apollonius‡. While therefore there appears to be no evidence of the use, before the time of Nicomedes, of such a mechanical
method of solving a ν σις, the interval between Archimedes and the discovery of the conchoid can hardly have been very
long. As a matter of fact, the conchoid of Nicomedes can be used to solve not only all the ν ύσ ις mentioned in Archimedes but
any case of such a problem where one of the curves is a straight line. Both Pappus and Eutocius attribute to Nicomedes the



invention of a machine for drawing his conchoid. AB is supposed to be a ruler with a slot in it parallel to its length, FE a
second ruler at right angles to the first with a fixed peg in it, C. This peg moves in a slot made in a third ruler parallel to its
length, while this ruler has a fixed peg on it, D, in a straight line with the slot in which C moves; and the peg D can move along
the slot in AB. If then the ruler PD moves so that the peg D describes the length of the slot in AB on each side of F, the extremity
of the ruler, P, describes the curve which is called a conchoid. Nicomedes called the straight line AB the ruler (κανών) the
fixed point C the pole (πó;λος), and the length PD the distance (διάστημα); and the fundamental property of the curve, which in
polar coordinates would now be denoted by the equation r = a + b sec θ, is that, if any radius vector be drawn from C to the
curve, as CP, the length intercepted on the radius vector between the curve and the straight line AB is constant. Thus any ν σις
in which one of the two given lines is a straight line can be solved by means of the intersection of the other line with a certain
conchoid whose pole is the fixed point to which the required straight line must verge (ν ύ ;ιύ). In practice Pappus tells us that
the conchoid was not always actually drawn, but that “some,” for greater convenience, moved the ruler about the fixed point
until by trial the intercept was made equal to the given length*.

§ 3. The following is the way in which Pappus applies conic sections to the solution of the ν ύσις referred to in Props. 8, 9
of the book On Spirals. He begins with two lemmas.

(1) If from a given point A any straight line be drawn meeting a straight line BC given in position in R, and if RQ be drawn
perpendicular to BC and bearing a given ratio to AB, the locus of Q is a hyperbola.

For draw AD perpendicular to BC, and on AD produced take A′ such that

QR : RA = A′D : DA = (the given ratio).

Measure DA″ along DA equal to DA’.
Then, if QN be perpendicular to AN,

(AR2 − AD2) : (QR2 − A′D2) = (const.),

or QN2 : A′N . A″N = (const.)
(2) If BC be given in length, and if RQ, a straight line drawn at right angles to BC from any point R on it, be such that

BR . RC = k . RQ,



where k is a straight line of given length, then the locus of Q is a parabola.
Let O be the middle point of BC, and let OK be drawn at right angles to it and of such length that

OC2 = k . KO.

Draw QN’ perpendicular to OK.
Then

In the particular case referred to by Archimedes (with the slight generalisation that the given length k to which PR is to be
equal is not necessarily equal to DE) we have

(1) the given ratio RQ: AR is unity, or RQ = AR, whence A″ coincides with A, and, by the first lemma,

QN2 = AN . A′N,

so that Q lies on a rectangular hyperbola.
(2) BR . RG = AR . RP = k . AR = k . RQ, and, by the second lemma, Q lies on a certain parabola.
If now we take O as origin, OC as axis of x and OK as axis of y, and if we put OD - a, AD = b, BC = 2c, the hyperbola and

parabola determining the position of Q are respectively denoted by the equations

which correspond exactly to the equations (β) above obtained by purely algebraical methods.
Pappus says nothing of the διορισμóς which is necessary to the complete solution of the generalised problem, the διορισμóς

namely which determines the maximum value of k for which the solution is possible. This maximum value would of course
correspond to the case in which the rectangular hyperbola and the parabola touch one another. Zeuthen has shown* that the
corresponding value of k can be determined by means of the intersection of two other hyperbolas or of a hyperbola and a
parabola, and there is no doubt that Apollonius, with his knowledge of conics, and in accordance with his avowed object in
giving the properties useful and necessary for διορισμοι, would have been able to work out this particular διορισμóς by means
of conics; but there is no evidence to show that Archimedes investigated it by the aid of conics, or indeed at all, it being clear,
as shown above, that it was not necessary for his immediate purpose.

This chapter may fitly conclude with a description of (1) some important applications of ν ύσ ις given by Pappus, and (2)
certain particular cases of the same class of problems which are plane, that is, can be solved by the aid of the straight line and
circle only, and which were (according to Pappus) shown by the Greek geometers to be of that character.

§ 4. One of the two important applications of ‘solid’ ν ύσ ις was discovered by Nicomedes, the inventor of the conchoid,
who introduced that curve for solving a vcvtrts to which he reduced the problem of doubling the cube* or (what amounts to the
same thing) the finding of two mean proportionals between two given miequal straight lines.

Let the given unequal straight lines be placed at right angles as CL, LA. Complete the parallelogram ABCL, and bisect AB at
D, and BC at E. Join LD and produce it to meet CB produced in H. From E draw EF at right angles to BC, and take a point F on
EF such that CF is equal to AD. Join HF, and through C draw CG parallel to HF. If we produce BC to K, the straight lines CG,
CK form an angle, and we now draw from the given point F a straight line FGK, meeting CG, CK in G, K respectively, such
that the intercept GK is equal to AD or FC. (This is the ν σις to which the problem is reduced, and it can be solved by means
of a conchoid with F as pole.)



Join KL and produce it to meet BA produced in M.
Then shall CK, AM be the required mean proportionals between CL, LA, or
We have, by Eucl. II. 6,

CL : CK = CK : AM = AM : AL.

BK . KC + CE2 = EK2.

If we add EF2 to each side,

BK . KC + CF2 = FK2.

Now, by parallels,

and, since AB = 2AD, and BC =  HC,

whence, componendo,

§ 5. The second important problem which can be reduced to a ‘solid’ ν σις is the trisection of any angle. One method of
reducing it to a vcwis has been mentioned above as following from Prop. 8 of the Liber Assumptorwm. This method is not
mentioned by Pappus, who describes (IV. p. 272 sq.) another way of effecting the reduction, introducing it with the words,
“The earlier geometers, when they sought to solve the aforesaid problem about the [trisection of the] angle, a problem by
nature ‘solid,’ by ‘plane’ methods, were unable to discover the solution; for they were not yet accustomed to the use of the
sections of the cone, and were for that reason at a loss. Later, however, they trisected an angle by means of conics, having used
for the discovery of it the following ν σις.”

The ν σις is thus enunciated: Given a rectangle ABGD, let it be required to draw through A a straight line AQR, meeting
CD in Q and BC produced in R, such that the intercept QR is equal to a given length, k suppose.

Suppose the problem solved, QR being equal to k. Draw DP parallel to QR and RP parallel to CD, meeting in P. Then, in
the parallelogram DR, DP = QR = k.

Hence P lies on a circle with centre D and radius k.



Again, by Eucl. I. 43 relating to the complements of the parallelograms about the diagonal of the complete parallelogram,

and, since BC . CD is given, it follows that P lies on a rectangular hyperbola with BE, BA as asymptotes and passing through
D.

Therefore, to effect the construction, we have only to draw this rectangular hyperbola and the circle with centre D and
radius equal to k. The intersection of the two curves gives the point P, and R is determined by drawing PR parallel to DC. Thus
AQR is found.

[Though Pappus makes ABCD a rectangle, the construction applies equally if ABCD is any parallelogram.]
Now suppose ABC to be any acute angle which it is required to trisect. Let AC be perpendicular to BC. Complete the

parallelogram ADBC, and produce DA.
Suppose the problem solved, and let the angle CBE be one-third of the angle ABC. Let BE meet AC in E and DA produced

in F. Bisect EF in H, and join AH.
Then, since the angle ABE is equal to twice the angle EBC and, by parallels, the angles EBC, EFA are equal,

∠ ABE = 2 ∠ AFH = ∠ AHB.

Therefore AB = AH = HF,

and

Hence, in order to trisect the angle ABC, we have only to solve the following ν σις: Given the rectangle ADBC whose
diagonal is AB, to draw through B a straight line BEF, meting AC in E and DA produced in F, such that EF may be equal to
twice AB; and this ν σις is solved in the manner just shown.

These methods of doubling the cube and trisecting any acute angle are seen to depend upon the application of one and the
same ν σις which may be stated in its most general form thus. Given any two straight lines forming an angle and any fixed
point which is not on either line, it is required to draw through the fixed point a straight line such that the portion of it
intercepted between the fixed lines is equal to a given length. If AE, AC be the fixed lines and B the fixed point, let the
parallelogram ACBD be completed, and suppose that BQR, meeting CA in Q and AE in R, satisfies the conditions of the
problem, so that QR is equal to the given length. If then the parallelogram CQRP is completed, we may regard P as an auxiliary
point to be determined in order that the problem may be solved; and we have seen that P can be found as one of the points of
intersection of (1) a circle with centre C and radius equal to k, the given length, and (2) the hyperbola which passes through C
and has DE, DB for its asymptotes.



It remains only to consider some particular cases of the problem which do not require conics for their solution, but are
‘plane’ problems requiring only the use of the straight line and circle.

§ 6. We know from Pappus that Apollonius occupied himself, in his two Books of ν ύύσ ις, with problems of that type
which were capable of solution by ‘plane’ methods. As a matter of fact, the above ν σις reduces to a ‘plane’ problem in the
particular case where B. lies on one of the bisectors of the angle between the two given straight lines, or (in other words)
where the parallelogram ACBD is a rhombus or a square. Accordingly we find Pappus enunciating, as one of the ‘plane’ cases
which had been singled out for proof on account of their greater utility for many purposes, the following*: Given a rhombus
with one side produced, to fit into the exterior angle a straight line given in length and verging to the opposite angle; and he
gives later on, in his lemmas to Apollonius’ work, a theorem bearing on the problem with regard to the rhombus, and (after a
preliminary lemma) a solution of the ν σις with reference to a square.

The question therefore arises, how did the Greek geometers discover these and other particular cases, where a problem
which is in general ‘solid,’ and therefore requires the use of conics (or a mechanical equivalent), becomes ‘plane’? Zeuthen is
of opinion that they were probably discovered as the result of a study of the general solution by means of conics †. I do not feel
convinced of this, for the following reasons.

(1) The authenticated instances appear to be very rare in which we should be justified in assuming that the Greeks used the
properties of conics, in the same way as we should combine and transform two Cartesian equations of the second degree, for
the purpose of proving that the intersections of two conics also lie on certain circles or straight lines. It is true that we may
reasonably infer that Apollonius discovered by a method of this sort his solution of the problem of doubling the cube where, in
place of the parabola and rectangular hyperbola used by Menaechmus, he employs the same hyperbola along with the circle
which passes through the points common to the hyperbola and parabola ‡; but in the only propositions contained in his conics
which offer an opportunity for making a similar reduction§, Apollonius does not make it, and is blamed by Pappus for not
doing so. In the propositions referred to the feet of the normals to a parabola drawn from a given point are determined as the
intersections of the parabola with a certain rectangular hyperbola, and Pappus objects to this method as an instance of
discovering the solution of a ‘plane’ problem by means of conics*, the objection having reference to the use of a hyperbola
where the same points could be obtained as the intersections of the parabola with a certain circle. Now the proof of this latter
fact would present no difficulty to Apollonius, and Pappus must have been aware that it would not; if therefore he objects in the
circumstances to the use of the hyperbola, it is at least arguable that he would equally have objected had Apollonius brought in
the hyperbola and used its properties for the purpose of proving the problem to be ‘plane’ in the particular case.

(2) The solution of the general problem by means of conics brings in the auxiliary point P and the straight line CP. We
should therefore naturally expect to find some trace of these in the particular solutions of the vcwis for a rhombus and square;
but they do not appear in the corresponding demonstrations and figures given by Pappus.

Zeuthen considers that the ν σις with reference to a square was probably shown to be ‘plane’ by means of the same
investigation which showed that the more general case of the rhombus was also capable of solution with the help of the straight
line and circle only, i.e. by a systematic study of the general solution by means of conics. This supposition seems to him more
probable than the view that the discovery of the plane construction for the square may have been accidental; for (he says) if the
same problem is treated solely by the aid of elementary geometrical expedients, the discovery that it is ‘plane’ is by no means
a simple matter†. Here, again, I am not convinced by Zeuthen’s arg ament, as it seems to me that a simpler explanation is
possible of the way in which the Greeks were led to the discovery that the particular veucrcis were plane. They knew in the
first place that the trisection of a right angle was a ‘plane’ problem, and therefore that half a right angle could be trisected by
means of the straight line and circle. It followed therefore that the corresponding ν σις, i.e. that for a square, was a plane’
problem in the particular case where the given length to which the required intercept was to be equal was double of the
diagonal of the square. This fact would naturally suggest the question whether the problem was still plane if k had any other
value; and, when once this question was thoroughly investigated, the proof that the problem was ‘plane,’ and the solution of it,
could hardly have evaded for long the pursuit of geometers so ingenious as the Greeks. This will, I think, be clear when the
solution given by Pappus and reproduced below is examined. Again, after it had been proved that the ν σις with reference to a
square was ‘plane,’ what more natural than the further inquiry as to whether the intermediate case between that of the square



and parallelogram, that of the rhombus, might perhaps be a ‘plane’ problem?
As regards the actual solution of the plane ν ύσ ις with respect to the rhombus and square, i.e. the cases in general where

the fixed point B lies on one of the bisectors of the angles between the two given straight lines, Zeuthen says that only in one of
the cases have we a positive statement that the Greeks solved the ν σις by means of the circle and ruler, the case, namely,
where ACBD is a square*. This appears to be a misapprehension, for not only does Pappus mention the case of the rhombus as
one of the plane ν ύσ ις which the Greeks had solved, but it is clear, from a proposition given by him later, how it was
actually solved. The proposition is stated by Pappus to be “involved” (παραθ ωρούμ νομ, meaning presumably “the subject of
concurrent investigation”) in the 8th problem of Apollonius’ first Book of ν ύσ ις, and is enunciated in the following form †.
Given a rhombus AD with diameter BC produced to E, if EF be a mean proportional between BE, EC, and if a circle be
described with centre E and radius EF cutting CD in K and AC produced in H , BKH shall be a straight line. The proof is as
follows.

Let the circle cut AC in L, and join HE, KE, LE. Let LK meet BC in M.
Since, from the property of the rhombus, the angles LCM, KCM are equal, and therefore CL, CK make equal angles with the

diameter FG of the circle, it follows that CL = CK.

Also EK = EL, and CE is common to the triangles ECK, ECL. Therefore the said triangles are equal in all respects, and

∠ CKE = ∠ CLE = ∠ CHE.

Now, by hypothesis,

EB : EF = EF : EC,

or EB : EK = EK : EC (since EF = EK),
and the angle CEK is common to the triangles BEK, KEC; therefore the triangles BEK, KEC are similar, and

Again, ∠ HCE = ∠ ACB = ∠ BCK.
Thus in the triangles CBK, CHE two angles are equal respectively;

therefore ∠ CEH = ∠ CRB.
But, since ∠ CKE = ∠ CHE, from above, the points K, C, E, H are concyclic.

and BKH is a straight line.
Now the form of the proposition at once suggests that, in the 8th problem referred to, Apollonius had simply given a

construction involving the drawing of a circle cutting CD and AC produced in the points K, H respectively, and Pappus’ proof
that BKH is a straight line is intended to prove that HK verges towards B , or (in other words) to verify that the construction
given by Apollonius solves a certain ν σις requiring BKH to be drawn so that KH is equal to a given length.

The analysis leading to the construction must have been worked out somewhat as follows.



Suppose BKH drawn so that KH is equal to the given length k. Bisect KH at N, and draw NE at right angles to KH meeting
BC produced in E.

Draw KM perpendicular to BC and produce it to meet CA in L. Then, from the property of the rhombus, the triangles KCM,
LCM are equal in all respects.

Therefore KM = ML) and accordingly, if MN be joined, MN, LH are parallel.
Now, since the angles at M, N are right, a circle can be described about EMKN.

Therefore

Hence a circle can be described about CEHK. It follows that

Therefore the triangles EKH, DBC are similar.
Lastly, ∠ CKN = ∠ CBK + ∠ BCK;

and, subtracting from these equals the equal angles EKN, BCK respectively, we have

∠ EKC = ∠ EBK.

Hence the triangles EBK, EKC are similar, and

BE : EK = EK : EC,

or BE . EC = EK2.
But, by similar triangles, EK: KH = DC: CB,
and the ratio DC: CB is given, while KH is also given (= k).

Therefore EK is given, and, in order to find E, we have only, in the Greek phrase, to “apply to BC a rectangle exceeding by
a square figure and equal to the given area EK2”

Thus the construction given by Apollonius was clearly the following*.
If k be the given length, take a straight line p such that

p : k = AB : BC.

Apply to BC a rectangle exceeding by a square figure and equal to the area p2. Let BE. EC be this rectangle, and with E as
centre and radius equal to p describe a circle cutting AG produced in H and CD in K.

HK is then equal to k, and verges towards B, as proved by Pappus; the problem is therefore solved.
The construction used by Apollonius for the ‘plane’ ν σις with reference to the rhombus having been thus restored by

means of the theorem given by Pappus, we are enabled to understand the purpose for which Pappus, while still on the subject
of the “8th problem” of Apollonius, adds a solution for the particular case of the square (which he calls a “problem after
Heraclitus”) with an introductory lemma. It seems clear that Apollonius did not treat the case of the square separately from the
rhombus because the solution for the rhombus was equally applicable to the square, and this supposition is confirmed by the
fact that, in setting out the main problems discussed in the ν ύσ ις, Pappus only mentions the rhombus and not the square. Being
however acquainted with a solution by one Heraclitus of the ν σις relating to a square which was not on the same lines as that
of Apollonius, while it was not applicable to the case of the rhombus, Pappus adds it as an alternative method for the square
which is worth noting*. This is no doubt the explanation of the heading to the lemma prefixed to Heraclitus’ problem which
Hultsch found so much difficulty in explaining and put in brackets as an interpolation by a writer who misunderstood the figure
and the object of the theorem. The words mean “Lemma useful for the [problem] with reference to squares taking the place of
the rhombus” (literally “having the same property as the rhombus”), i.e. a lemma useful for Heraclitus’ solution of the ν σις in
the particular case of a square*. The lemma is as follows.

ABCD being a square, suppose BHE drawn so as to meet CD in H and AD produced in E, and let EF be drawn
perpendicular to BE meeting BC produced in F. To prove that

CF2 = BC2 + HE2.

Suppose EG drawn parallel to DC meeting CF in G. Then since BEF is a right angle, the angles HBC, FEG are equal.



Therefore the triangles BCH, EGF are equal in all respects, and
EF = BH.

Now BF2 = BE2 + EF2,
or BC . BF + BF . FC = BH . BE + BE . EH + EF2.

But, the angles HCF, HEF being right, the points C, H, E, F are concyclic, and therefore

BC . BF = BH . BE.

Subtracting thes equals, we have

Take away the common part BC. CF, and

CF2 = BC2 + EH2.

Heraclitus’ analysis and construction are now as follows.
Suppose that we have drawn BHE so that HE has a given length k.

Since CF2 = BC2 + EH2, or BC2 + k2,
and BC and k are both given,

CF is given, and therefore BF is given.

Thus the semicircle on BF as diameter is given, and therefore also E, its intersection with the given line ABE; hence BE is
given.

To effect the construction, we first find a square equal to the sum of the given square and the square on k. We then produce
BC to F so that CF is equal to the side of the square so found. If a semicircle be now described on BF as diameter, it will pass
above D (since CF > CD, and therefore BC . CF > CD2), and will therefore meet AD produced in some point E.

Join BE meeting CD in H.
Then HE = k, and the problem is solved.

* Pappus (ed. Hultsch) VII. p. 670.
† In the German translation of Zeuthen’s work, Die Lehre von den Kegelschnitten im Altertum, ν σις is translated by “Einschiebung,” or as we might say

“insertion,” but this fails to express the condition that the required line must pass through a given point, just as inclinatio (and for that matter the Greek term itself) fails to
express the other requirement that the intercept on the line must be of given length.

* Simplicius, Comment. in Aristot. Phys. pp. 61—68 (ed. Diels). The whole quotation is reproduced by Bretschneider, Die Geometrie und die Geometer vor
Euklides, pp. 109—121. As regards the assumed construction see particularly p. 64 and p. xxiv of Diels’ edition; cf. Bretschneider, pp. 114, 115, and Zeuthen, Die Lehre
von den Kegelschnitten im Altertum, pp. 269, 270.

† Pappus IV. pp. 270—272.
‡ Cf. Apollonius of Perga, pp. cxxviii. cxxix.
* Pappus IV. 298 sq.
* See note to On the Sphere and Cylinder II. 4.
† Pappus III. p. 54.
* Pappus III. p. 56.
† For fuller details see Apollonius of Perga, pp, cxxv—cxxvii.

‡ Bulletin des Sciences Mathématiques, 2e série VII. p. 284.
* Pappus IV. p. 246.



* Zeuthen, Die Lehre von den Kegelschnitten im Altertum, pp. 273—5.
* Pappus IV. p. 242 sq. III. p. 58 sq.; Eutocius on Archimedes, on the sqhere and Cylinder, II. 1 (Vol. III. p, 114 sq.)
* Pappus VII. p. 670.
† “Mit dieser selben Aufgabe ist nämlich ein wichtiges Beispiel dafür verknüpft, dass man bemüht war solche Fälle zu entdecken, in denen Aufgaben, zu deren Lösung

im allgemeinen Kegelschnitte erforderlich sind, sich mittels Zirkel und Lineal lösen lassen. Da nun das Studium der allgemeinen Lösung durch Kegelschnitte das beste
Mittel gewährt solche Fälle zu entdecken, so ist es ziemlich wahrscheinlich, dass man wirklich diesen Weg eingeschlagen hat.” Zeuthen, op. cit. p. 280.

‡ Apollonius of Perga, p. cxxy, cxxvi.
§ Ibid. p. cxxviii and pp. 18?, 186 (Comcs, v. 58, 62
* Pappus IV. p. 270. Cf. p. ciii above.
† “Die Ausführbarkeit kann dann auf die zuerst angedeutete Weise gefunden sein, die den allgemeinen Fall, wo der Winkel zwischen den gegebenen Geraden beliebig

ist, in sich begreift. Dies scheint mir viel wahrscheinlicher als die Annahme, dass die Entdeckung dieser ebenen Konstruction zufällig sein sollte; denn wenn man dieselbe
Aufgabe nur mittels rein elementar-geometrischer Hülfsmittel behandelt, so liegt die Entdeckung, dass sie eben ist, ziemlich fern.” Zeuthen, op. cit. p. 282.

* “Indessen besitzen wir doch nur in einem einzelnen hierher gehörigen Falle eine positive Angabe darüber, dass die Griechen die Einschiebung mittels Zirkel und Lineal
ausgeführt haben, wenn namlich die gegebenen Geraden zugleich rechte Winkel bilden, AIBC also ein Quadrat wird.” Zeuthen, op. cit. p. 281.

† Pappus VII. p. 778.
* This construction was suggested to me by a careful examination of Pappus’ proposition without other aid; but it is no new discovery. Samuel Horsley gives the same

construction in his restoration of Apollonii Pergaei Inclinationum libri duo  (Oxford, 1770); he explains, however, that he went astray in consequence of a mistake in the
figure given in the mss., and was unable to deduce the construction from Pappus’s proposition until he was recalled to the right track by a solution of the same problem by
Hugo d’Omerique. This solution appears In a work entitled, Analysis geometrica, sive nova et vera methodus resolvendi tam problemata geometrica quam
arithmeticas quaestiones, published at Cadiz in 1698. D’Omerique’s construction, which is practically identical with that of Apollonius, appears to have been evolved by
means of an independent analysis of his own, since he makes no reference to Pappus, as he does in other cases where Pappus is drawn upon (e.g. when giving the
construction for the case of the square attributed by Pappus to one Heraclitus). The construction differs from that given above only in the fact that the circle is merely used
to determine the point K, after which BK is joined and produced to meet AC in H. Of other solutions of the same problem two may here be mentioned. (1) The solution
contained in Marino Ghetaldi’s posthumous work De Resolutione et Compositione Mathematica Libri quinque (Rome, 1630), and included among the solutions of other
problems all purporting to be solved “methodo qua antiqui utebantur,” is, though geometrical, entirely different from that above given, being effected by means of a
reduction of the problem to a simpler plane ν σις of the same character as that assumed by Hippocrates in his Quadrature of lunes. (2) Christian Huygens (De circuli
magnitudine inventa; accedunt problematum quorundam illustrium comtructiones , Lugduni Batavorum, 1654) gave a rather complicated solution, which may be
described as a generalisation of Heraclitus’ solution in the case of a square.

* This view of the matter receives strong support from the following facts. In Pappus’ summary (p. 670) of the contents of the ν ύσ ις of Apollonius “two cases” of
the ν σις with reference to the rhombus are mentioned last among the particular problems given in the first of the two Books. As we have seen, one case (that given
above) was the subject of the “8th problem” of Apollonius, and it is equally clear that the other case was dealt with in the “9th problem.” The other case is clearly that in
which the line to be drawn through B, instead of crossing the exterior angle of the rhombus at C, lies across the angle C itself, i.e. meets CA, CD both produced. In the
former case the solution of the problem is always possible whatever be the length of k ; but in the second case clearly the problem is not capable of solution if k , the given
length, is less than a certain minimum. Hence the problem requires a διορισμóς to determine the minimum length of k . Accordingly we find Pappus giving, after the
interposition of the case of the square, a “lemma useful for the διορισμóς of the 9th problem,” which proves that, if CH = CK and B be the middle point of HK, then HK is
the least straight line which can be drawn through B to meet CH, CK. Pappus adds that the διορισμóς for the rhombus is then evident; if HK be the line drawn through B
perpendicular to CB and meeting CA, CD produced in H, K, then, in order that the problem may admit of solution, the given length k  must be not less than HK.

* Hultsch translates the words λ μμα χρήσινου ìς τò πì τ τραγώνων ποιούντων τà α τà τ  óμβψ (p. 780) thus, “Lemma utile ad problema de quadratis quorum
summa rhombo aequalis est,” and has a note in his Appendix (p. 1260) explaining what he supposes to be meant. The ‘squares’ he takes to be the given square and the
square on the given length of the intercept, and the rhombus to be one for which he indicates a construction but which is not shown in Pappus’ figure. Thus he is obliged to
translate τ  óμβψ as “a rhombus,” which is one objection to his interpretation, while “whose squares are equal” scarcely seems a possible rendering of ποιύντων τà α τà.



CHAPTER VI.

CUBIC EQUATIONS.

IT has often been explained how the Greek geometers were able to solve geometrically all forms of the quadratic equation
which give positive roots; while they could take no account of others because the conception of a negative quantity was
unknown to them. The quadratic equation was regarded as a simple equation connecting areas, and its geometrical expression
was facilitated by the methods which they possessed of transforming any rectilineal areas whatever . into parallelograms,
rectangles, and ultimately squares, of equal area; its solution then depended on the principle of application of areas, the
discovery of which is attributed to the Pythagoreans. Thus any plane problem which could be reduced to the geometrical
equivalent of a quadratic equation with a positive root was at once solved. A particular form of the equation was the pure
quadratic, which meant for the Greeks the problem of finding a square equal to a given rectilineal area. This area could be
transformed into a rectangle, and the general form of the equation thus became x2 = ab, so that it was only necessary to find a
mean proportional between a and b. In the particular case where the area was given as the sum of two or more squares, or as
the difference of two squares, an alternative method depended on the Pythagorean theorem of Eucl. i. 47 (applied, if necessary,
any number of times successively). The connexion between the two methods is seen by comparing Eucl. VI. 13, where the mean
proportional between a and b is found, and Eucl. II. 14, where the same problem is solved without the use of proportions by
means of I. 47, and where in fact the formula used is

The choice between the two methods was equally patent when the equation to be solved was x2 = pa2, where p is any integer;
hence the ‘multiplication’ of squares was seen to be dependent on the finding of a mean proportional. The equation x2 = 2a2

was the simplest equation of the kind, and the discovery of a geometrical construction for the side of a square equal to twice a
given square was specially important, as it was the beginning of the theory of incommensurables or ‘irrationals’ (άλογων
7τραγ/χαταα) which was invented by Pythagoras. There is every reason to believe that this successful doubling of the square
was what suggested the question whether a construction could not be found for the doubling of the cube, and the stories of the
tomb erected by Minos for his son and of the oracle bidding the Delians to double a cubical altar were no doubt intended to
invest the purely mathematical problem with an element of romance. It may then have been the connexion between the doubling
of the square and the finding of one mean proportional which suggested the reduction of the doubling of the cube to the problem
of finding two mean proportionals between two unequal straight lines. This reduction, attributed to Hippocrates of Chios,
showed at the same time the possibility of multiplying the cube by any ratio. Thus, if x, y are two mean proportionals between
a, b, we have

a : x = x : y = y : b,

and we derive at once

a : b − a3 : x3,

whence a cube (x3) is obtained which bears to a3 the ratio b: a, while any fraction  can be transformed into a ratio between

lines of which one (the consequent) is equal to the side a of the given cube. Thus the finding of two mean proportionals gives
the solution of any pure cubic equation, or the equivalent of extracting the cube root, just as the single mean proportional is
equivalent to extracting the square root. For suppose the given equation to be x3 = bed. We have then only to find a mean
proportional a between c and d, and the equation becomes x3 = a2 . b = a3.  which is exactly the multiplication of a cube by a

ratio between lines which the two mean proportionals enable us to effect.
As a matter of fact, we do not find that the great geometers were in the habit of reducing problems to the multiplication of

the cube eo nomine, but to the equivalent problem of the two mean proportionals; and the cubic equation x3 = a2b is not usually
stated in that form but as a proportion. Thus in the two propositions On the Sphere and Cylinder II. 1, 5, where Archimedes
uses the two mean proportionals, it is required to find x where

a2 : x2 = x : b ;

he does not speak of finding the side of a cube equal to a certain parallelepiped, as the analogy of finding a square equal to a
given rectangle might have suggested. So far therefore we do not find any evidence of a general system of adding and
subtracting solids by transforming parallelepipeds into cubes and cubes into parallelepipeds which we should have expected
to see in operation if the Greeks had systematically investigated the solution of the general form of the cubic equation by a



method analogous to that of the application of areas employed in dealing with quadratic equations.
The question then arises, did the Greek geometers deal thus generally with the cubic equation

x3 ± ax2 ± Bx ± Γ = 0,

which, on the supposition that it was regarded as an independent problem in solid geometry, would be for them a simple
equation between Solid figures, x and a both representing linear magnitudes, B an area (a rectangle), and T a volume (a
parallelepiped)? And was the reduction of a problem of an order higher than that which could be solved by means of a
quadratic equation to the solution of a cubic equation in the form shown above a regular and recognised method of dealing with
such a problem ? The only direct evidence pointing to such a supposition is found in Archimedes, who reduces the problem of
dividing a sphere by a plane into two segments whose volumes are in a given ratio (On the Sphere and Cylinder II. 4) to the
solution of a cubic equation which he states in a form equivalent to

where a is the radius of the sphere, m: n the given ratio (being a ratio between straight lines of which m > n), and x the height
of the greater of the required segments. Archimedes explains that this is a particular case of a more general problem, to divide
a straight line (a) into two parts (x, a − x) such that one part (a − x) is to another given straight line (c) as a given area (which
for convenience’ sake we suppose transformed into a square, b2) is to the square b2) the other part (x2), i.e. so that

He further explains that the equation (2) stated thus generally requires a διορισμός, i.e. that the limits for the possibility of a
real solution, etc., require to be investigated, but that the particular case (with the conditions obtaining in the particular
proposition) requires no διορισμός, i.e. the equation (1) will always give a real solution. He adds that “the analysis and
synthesis of both these problems will be given at the end.” That is, he promises to give separately a complete investigation of
the equation (2), which is equivalent to the cubic equation

and to apply it to the particular case (1).
Wherever the solution was given, it was temporarily lost, having apparently disappeared even before the time of

Dionysodorus and Diodes (the latter of whom lived, according to Cantor, not later than about 100 B.C.); but Eutocius describes
how he found an old fragment which appeared to contain the original solution of Archimedes, and gives it in full. It will be
seen on reference to Eutocius’ note (which I have reproduced immediately after the proposition to which it relates, On the
Sphere and Cylinder II. 4) that the solution (the genuineness of which there seems to be no reason to doubt) was effected by
means of the intersection of a parabola and a rectangular hyperbola whose equations may respectively be written thus,

(a − x) y = ac.

The διορισμός takes the form of investigating the maximum possible value of x2 (a − x), and it is proved that this maximum
value for a real solution is that corresponding to the value x =  a. This is established by showing that, if b2c =  a2, the

curves touch at the point for which x =  a. If on the other hand b2c <  a2, it is proved that there are two real solutions. In the

particular case (1) it is clear that the condition for a real solution is satisfied, for the expression in (1) corresponding to b2c in
(2) is , and it is only necessary that

which is obviously true.
Hence it is clear that not only did Archimedes solve the cubic equation (3) by means of the intersections of two conics, but

he also discussed completely the conditions under which there are 0, 1 or 2 roots lying between 0 and a. It is to be noted
further that the διορισμός is similar in character to that by which Apollonius investigates the number of possible normals that
can be drawn to a conic from a given point*. Lastly, Archimedes’ method is seen to be an extension of that used by
Menaechmus for the solution of the pure cubic equation. This can be put in the form



a3 : x3 = a : b,

which can again be put in Archimedes’ form thus,

a2 : x2 = a : b,

and the conics used by Menaechmus are respectively

x2 = ay, xy = ab,

which were of course suggested by the two mean proportionals satisfying the equations

a : x = x : y − y : b.

The case above described is not the only one where we may assume Archimedes to have solved a problem by first
reducing it to a cubic equation and then solving that. At the end of the preface to the book On Conoids and Spheroids he says
that the results therein obtained may be used for discovering many theorems and problems, and, as instances of the latter, he
mentions the following, “from a given spheroidal figure or conoid to cut off, by a plane drawn parallel to a given plane, a
segment which shall be equal to a given cone or cylinder, or to a given sphere.” Though Archimedes does not give the
solutions, the following considerations may satisfy us as to his method.

(1) The case of the ‘right-angled conoid’ (the paraboloid of revolution) is a ‘plane’ problem and therefore does not
concern us here,

(2) In the case of the spheroid, the volume of the whole spheroid could be easily ascertained, and, by means of that, the
ratio between the required segment and the remaining segment; after which the problem could be solved in exactly the same
way as the similar one in the case of the sphere above described, since the results in On Conoids and Spheroids, Props.
29—32, correspond to those of On the Sphere and Cylinder II. 2. Or Archimedes may have proceeded in this case by a more
direct method, which we may represent thus. Let a plane be drawn through the axis of the spheroid perpendicular to the given
plane (and therefore to the base of the required segment). This plane will cut the elliptical base of the segment in one of its
axes, which we will call 2y. Let x be the length of the axis of the segment (or the length intercepted within the segment of the
diameter of the spheroid passing through the centre of the base of the segment). Then the area of the base of the segment will
vary as y2 (since all sections of the spheroid parallel to the given plane must be similar), and therefore the volume of the cone
which has the same vertex and base as the required segment will vary as y2x. And the ratio of the volume of the segment to that
of the cone is (On Conoids and Spheroids, Props. 29—32) the ratio (3a − x): (2a − x), where 2a is the length of the diameter
of the spheroid which passes through the vertex of the segment. Therefore

where C is a known volume. Further, since x, y are the coordinates of a point on the elliptical section of the spheroid made by
the plane through the axis perpendicular to the cutting plane, referred to a diameter of that ellipse and the tangent at the
extremity of the diameter, the ratio y2:x(2a−x) is given. Hence the equation can be put in the form

x2 (3a − x) = b2c,

and this again is the same equation as that solved in the fragment given by Eutocius. A διορισμός is formally necessary in this
case, though it only requires the constants to be such that the volume to which the segment is to be equal must be less than that
of the whole spheroid.

(3) For the ‘obtuse-angled conoid’ (hyperboloid of revolution) it would be necessary to use the direct method just
described for the spheroid, and, if the notation be the same, the corresponding equations will be found, with the help of On
Conoids and Spheroids, Props. 25. 26, to be

and, since the ratio y2: x (2a + x) is constant,

x2 (3a + x) = b2c.

If this equation is written in the form of a proportion like the similar one above, it becomes



b2 : x2 = (3a + x) : c.

There can be no doubt that Archimedes solved this equation as well as the similar one with a negative sign, i. e. he solved
the two equations

x3 ± ax2  b2c = 0,

obtaining all their positive real roots. In other words, he solved completely, so far as the real roots are concerned, a cubic
equation in which the term in x is absent, although the determination of the positive and negative roots of one and the same
equation meant for him two separate problems. And it is clear that all cubic equations can be easily reduced to the type which
Archimedes solved.

We possess one other solution of the cubic equation to which the division of a sphere into segments bearing a given ratio to
one another is reduced by Archimedes. This solution is by Dionysodorus, and is given in the same note of Eutocius*.
Dionysodorus does not generalise the equation, however, as is done in the fragment quoted above; he merely addresses himself
to the particular case,

thereby avoiding the necessity for a διορισμός. The curves which he. uses are the parabola

and the rectangular hyperbola

When we turn to Apollonius, we find him emphasising in his preface to Book IV. of the Conics* the usefulness of
investigations of the possible number of points in which conics may intersect one another or circles, because “they at all events
afford a more ready means of observing some things, e.g. that several solutions are possible, or that they are so many in
number, and again that no solution is possible”; and he shows his mastery of this method of investigation in Book v., where he
determines the number of normals that can be drawn to a conic through any given point, the condition that two normals through
it coincide, or (in other words) that the point lies on the evolute of the conic, and so on. For these purposes he uses the points
of intersection of a certain rectangular hyperbola with the conic in question, and among the cases we find (v. 51, 58, 62) some
which can be reduced to cubic equations, those namely in which the conic is a parabola and the axis of the parabola is parallel
to one of the asymptotes of the hyperbola. Apollonius however does not bring in the cubic equation ; he addresses himself to
the direct geometrical solution of the problem in hand without reducing it to another. This is after all only natural, because the
solution necessitated the drawing of the rectangular hyperbola in the actual figure containing the conic in question; thus, e.g. in
the case of the problem leading to a cubic equation, Apollonius can, so to speak, compress two steps into one, and the
introduction of the cubic as such would be mere surplusage. The case was different with Archimedes, when he had no conic in
his original figure; and the fact that he set himself to solve a cubic somewhat more general than that actually involved in the
problem made separate treatment with a number of new figures necessary. Moreover Apollonius was at the same time dealing,
in other propositions, with cases which did not reduce to cubics, but would, if put in an algebraical form, lead to biquadratic
equations, and these, expressed as such, would have had no meaning for the Greeks ; there was therefore the less reason in the
simpler case to introduce a subsidiary problem.

As already indicated, the cubic equation, as a subject of systematic and independent study, appears to have been lost sight
of within a century or so after the death of Archimedes. Thus Diodes, the discoverer of the cissoid, speaks of the problem of
the division of the sphere into segments in a given ratio as having been reduced by Archimedes “to another problem, which he
does not solve in his work on the sphere and cylinder”; and he then proceeds to solve the original problem directly, without in
any way bringing in the cubic. This circumstance does not argue any want of geometrical ability in Diodes; on the contrary, his
solution of the original problem is a remarkable instance of dexterity in the use of conics for the solution of a somewhat
complicated problem, and it proceeds on independent lines in that it depends on the intersection of an ellipse and a rectangular
hyperbola, whereas the solutions of the cubic equation have accustomed us to the use of the parabola and the rectangular
hyperbola. I have reproduced Diodes’ solution in its proper place as part of the note of Eutocius on Archimedes’ proposition;
but it will, I think, be convenient to give here its equivalent in the ordinary notation of analytical geometry, in accordance with
the plan of this chapter. Archimedes had proved [On the Sphere and Cylinder II. 2] that, if k be the height of a segment cut off
by a plane from a sphere of radius a, and if h be the height of the cone standing on the same base as that of the segment and
equal in volume to the segment, then



(3a − k) : (2a − k ) = h : k.

Also, if h’ be the height of the cone similarly related to the remaining segment of the sphere,

(a + k) : k = h′ : (2a − k).

From these equations we derive

(h − k) : k = a : (2a − k),

and (h′ − 2a + k) : (2a − k) = a : k.
Slightly generalising these equations by substituting for a in the third term of each proportion another length b, and adding

the condition that the segments (and therefore the cones) are to bear to each other the ratio m: n, Diodes sets himself to solve
the three equations

Suppose m > n, so that k > a. The problem then is to divide a straight line of length 2a into two parts k and (2a − k) of
which k is the greater, and which are such that the three given equations are all simultaneously satisfied.

Imagine two coordinate axes such that the origin is the middle point of the given straight line, the axis of y is at right angles
to it, and x is positive when measured along that half of the given straight line which is to contain the required point of
division. Then the conics drawn by Diodes are

(1) the ellipse represented by the equation

and (2) the rectangular hyperbola

(x + a) (y + b) = 2ab.

One intersection between these conics gives a value of x between 0 and a, and leads to the solution required. Treating the
equations algebraically, and eliminating y by means of the second equation which gives

we obtain from the first equation

that is, 

In other words Diodes’ method is the equivalent of solving a complete cubic equation containing all the three powers of x and
a constant, though no mention is made of such an equation.

To verify the correctness of the result we have only to remember that, x being the distance of the point of division from the
middle point of the given straight line,

k − a + x, 2a − h − a − x.

Thus, from the first two of the given equations (A) we obtain respectively

whence, by means of the third equation, we derive

which is the same equation as that found by elimination above (B).



I have purposely postponed, until the evidence respecting the Greek treatment of the cubic equation was complete, any
allusion to an interesting hypothesis of Zeuthen’s* which, if it could be accepted as proved, would explain some difficulties
involved in Pappus’ account of the orthodox classification of problems and loci. I have already quoted the passage in which
Pappus distinguishes the problems which are plane ( πίπ δα), those which are solid (στ ρ ά) and those which are linear
(γραμμικά) †. Parallel to this division of, problems into three orders or classes is the distinction between three classes of loci
‡. The first class consists of plane loci (τόποι πίπ δοι) which are exclusively straight lines and circles, the second of solid
loci (τόποι στ ρ οί) which are conic sections§, and the third of linear loci (τόποι γραμμικόί). It is at the same time clearly
implied by Pappus that problems were originally called plane, solid or linear respectively for the specific reason that they
required for their solution the geometrical loci which bore the corresponding names. But there are some logical defects in the
classification both as regards the problems and the loci.

(1) Pappus speaks of its being a serious error on the part of geometers to solve a plane problem by means of conics (i.e.
‘solid loci’) or ‘linear’ curves, and generally to solve a problem “by means of a foreign kind” ( ξ άνοίκ ίον γ νονς). If this
principle were applied strictly, the objection would surely apply equally to the solution of a ‘solid’ problem by means of a
‘linear’ curve. Yet, though e.g. Pappus mentions the conchoid and the cissoid as being ‘linear’ curves, he does not object to
their employment in the solution of the problem of the two mean proportionals, which is a ‘solid’ problem.

(2) The application of the term ‘solid loci’ to the three conic sections must have reference simply to the definition of the
curves as sections of a solid figure, viz. the cone, and it was no doubt in contrast to the ‘solid locus’ that the ‘plane locus’ was
so called. This agrees with the statement of Pappus that ‘plane’ problems may properly be so called because the lines by
means of which they are solved “have their origin in a plane.” But, though this may be regarded as a satisfactory distinction
when ‘plane’ and ‘solid’ loci are merely considered in relation to one another, it becomes at once logically defective when the
third or ‘linear’ class is also brought in. For, on the one hand, Pappus shows how the ‘quadratrix’ (a ‘linear’ curve) can be
produced by a construction in three dimensions (“by means of surface-loci,” διà τ ν πρòς πιφαν ίαις τόπων); and, on the other
hand, other ‘linear’ loci, the conchoid and cissoid, have their origin in a plane. If then Pappus’ account of the origin of the
terms ‘plane’ and ‘solid’ as applied to problems and loci is literally correct, it would seem necessary to assume that the third
name of ‘linear’ problems and loci was not invented until a period when the terms ‘plane’ and ‘solid loci’ had been so long
recognised and used that their origin was forgotten.

To get rid of these difficulties, Zeuthen suggests that the terms ‘plane’ and ‘solid’ were first applied to problems, and that
they came afterwards to be applied to the geometrical loci which were used for the purpose of solving them. On this
interpretation, when problems which could be solved by means of the straight line and circle were called ‘plane,’ the term is
supposed to have had reference, not to any particular property of the straight line or circle, but to the fact that the problems
were such as depend on an equation of a degree not higher than the second. The solution of a quadratic equation took the
geometrical form of application of areas, and the term ‘plane’ became a natural one to apply to the class of problems so soon
as the Greeks found themselves confronted with a new class of problems to which, in contrast, the term ‘solid’ could be
applied. This would happen when the operations by which problems were reduced to applications of areas were tried upon
problems which depend on the solution of a cubic equation. Zeuthen, then, supposes that the Greeks sought to give this equation
a similar shape to that which the reduced ‘plane’ problem took, that is, to form a simple equation between solids
corresponding to the cubic equation

x3 + ax2 + Bx + Γ = 0 ;

the term ‘solid’ or ‘plane’ being then applied according as it had been reduced, in the manner indicated, to the geometrical
equivalent of a cubic or a quadratic equation.

Zeuthen further explains the term ‘linear problem’ as having been invented afterwards to describe the cases which, being
equivalent to algebraical equations of an order higher than the third, would not admit of reduction to a simple relation between
lengths, areas and volumes, and either could not be reduced to an equation at all or could only be represented as such by the
use of compound ratios. The term ‘linear’ may perhaps have been applied because, in such cases, recourse was had to new
classes of curves, directly and without any intermediate step in the shape of an equation. Or, possibly, the term may not have
been used at all until a time when the original source of the names ‘plane’ and ‘solid’ problems had been forgotten.

On these assumptions, it would still be necessary to explain how Pappus came to give a more extended meaning to the term
‘solid problem,’ which according to him equally includes those problems which, though solved by the same method of conics
as was used to solve the equivalent of cubics, do not reduce to cubic equations but to biquadratics. This is explained by the
supposition that, the cubic equation having by the time of Apollonius been obscured from view owing to the attention given to
the method of solution by means of conics and the discovery that the latter method was one admitting of wider application, the



possibility of solution by means of conics came itself to be regarded as the criterion determining the class of problem, and the
name ‘solid problem’ came to be used in the sense given to it by Pappus through a natural misapprehension. A similar
supposition would account, in Zeuthen’s view, for a circumstance which would otherwise seem strange, viz. that Apollonius
does not use the expression ‘solid problem,’ though it might have been looked for in the preface to the fourth Book of the
Conics. The term may have been avoided by Apollonius because it then had the more restricted meaning attributed to it by
Zeuthen and therefore would not have been applicable to all the problems which Apollonius had in view.

It must be admitted that Zeuthen’s hypothesis is in several respects attractive. I cannot however feel satisfied that the
positive evidence in favour of it is sufficiently strong to outweigh the authority of Pappus where his statements tell the other
way. To make the position clear, we have to remember that Menaechmus, the discoverer of the conic sections, was a pupil of
Eudoxus who flourished about 365 B.C.; probably therefore we may place the discovery of conics at about 350 B.C. Now
Aristaeus ‘the elder’ wrote a book on solid loci (στ ρ οì τόποι) the date of which Cantor concludes to have been about 320
B.C. Thus, on Zeuthen’s hypothesis, the ‘solid problems’ the solution of which by means of conics caused the latter to be called
‘solid loci’ must have been such as had been already investigated and recognised as solid problems before 320 B.C., while the
definite appropriation, so to speak, of the newly discovered curves to the service of the class of problems must have come
about in the short period between their discovery and the date of Aristaeus’ work. It is therefore important to consider what
particular problems leading to cubic equations appear to have been the subject of speculation before 320 B.C. We have
certainly no ground for assuming that the cubic equation used by Archimedes (On the Sphere and Cylinder II. 4) was one of
these problems; for the problem of cutting a sphere into segments bearing a given ratio to one another could not have been
investigated by geometers who had not succeeded in finding the volume of a sphere and a segment of a sphere, and we know
that Archimedes was the first to discover this. On the other hand there was the duplication of the cube, or the solution of a pure
cubic equation, which was a problem dating from very early times. Also it is certain that the trisection of an angle had long
exercised the minds of the Greek geometers. Pappus says that “the ancient geometers” considered this problem and first tried to
solve it, though it was by nature a solid problem (πρόβλημα τ  ϕύσ ι στ ρ òν ύπáρχον), by means of plane considerations (δια
τ ν πιπ δων) but failed; and we know that Hippias of Elis invented, about 420 B.C., a transcendental curve which was capable
of being used for two purposes, the trisection of an angle, and the quadrature of a circle*. This curve came to be called the
Quadratrix†, but, as Deinostratus, a brother of Menaechmus, was apparently the first to apply the curve to the quadrature of the
circle‡ we may no doubt conclude that it was originally intended for the purpose of trisecting an angle. Seeing therefore that
the Greek geometers had used their best efforts to solve this problem before the invention of conics, it may easily be that they
had succeeded in reducing it to the geometrical equivalent of a cubic equation. They would not have been unequal to effecting
this reduction by means of the figure of the ν σις given above on p. cxii. with a few lines added. The proof would of course
be the equivalent of eliminating x between the two equations

where x = DF; y = FP = EC, a = DA, b = DB.
The second equation gives

(x + a) (x − 3a) = (y + b) (3b − y).

From the first equation it is easily seen that

(x + a) : (y + b) = a : y,

and that (x − 3a) y = a (b − 3y) ;

[or y3 − 3by2 − 3a2y + a2b = 0].
If then the trisection of an angle had been reduced to the geometrical equivalent of this cubic equation, it would be natural for
the Greeks to speak of it as a solid problem. In this respect it would be seen to be similar in character to the simpler problem
of the duplication of the cube or the equivalent of a pure cubic equation; and it would be natural to see whether the
transformation of volumes would enable the mixed cubic to be reduced to the form of the pure cubic, in the same way as the
transformation of areas enabled the mixed quadratic to be reduced to the pure quadratic. The reduction to the pure cubic would
soon be seen to be impossible, and the stereometric line of investigation would prove unfruitful and be abandoned accordingly.

The two problems of the duplication of the cube and the trisection of an angle, leading in one case to a pure cubic equation
and in the other to a mixed cubic, are then the only problems leading to cubic equations which we can be certain that the
Greeks had occupied themselves with up to the time of the discovery of the conic sections. Menaechmus, who discovered
these, showed that they could be successfully used for finding the two mean proportionals and therefore for solving the pure



cubic equation, and the next question is whether it had been proved before the date of Aristaeus’ Solid Loci that the trisection
of an angle could be effected by means of the same conics, either in the form of the ν σις above described directly and without
the reduction to a cubic equation, or in the form of the subsidiary cubic (β). Now (1) the solution of the cubic would be
somewhat difficult in the days when conics were still a new thing. The solution of the equation (β) as such would involve the
drawing of the conics which we should represent by the equations

xy = a2,

bx = 3a2 + 3by − y2,

and the construction would be decidedly more difficult than that used by Archimedes in connexion with his cubic, which only
requires the construction of the conics

hence we can hardly assume that the trisection of an angle in the form of the subsidiary cubic equation was solved by means of
conics before 320 B.C. (2) The angle may have been trisected by means of conics in the sense that the ν σις referred to was
effected by drawing the curves (a), i.e. a rectangular hyperbola and a circle. This could easily have been done before the date
of Aristaeus; but if the assignment of the name ‘solid loci’ to conics had in view their applicability to the direct solution of the
problem in this manner without any reference to the cubic equation, or simply because the problem had been before proved to
be ‘solid’ by means of the reduction to that cubic, then there does not appear to be any reason why the Quadratrix, which had
been used for the same purpose, should not at the time have been also regarded as a ‘solid locus,’ in which case Aristaeus
could hardly have appropriated the latter term, in his work, to conics alone. (3) The only remaining alternative consistent with
Zeuthen’s view of the origin of the name ‘solid locus’ appears to be to suppose that conics were so called simply because they
gave a means of solving one ‘solid problem,’ viz. the doubling of the cube, and not a problem of the more general character
corresponding to a mixed cubic equation, in which case the justification for the general name ‘solid locus’ could only be
admitted on the assumption that it was adopted at a time when the Greeks were still hoping to be able to reduce the general
cubic equation to the pure form. I think however that the traditional explanation of the term is more natural than this would be.
Conics were the first curves of general interest for the description of which recourse to solid figures was necessary as distinct
from the ordinary construction of plane figures in a plane*; hence the use of the term ‘solid locus’ for conics on the mere
ground of their solid origin would be a natural way of describing the new class of curves in the first instance, and the term
would be likely to remain in use, even when the solid origin was no longer thought of, just as the individual conics continued to
be called “sections of a right-angled, obtuse-angled, and acute-angled” cone respectively.

While therefore, as I have said, the two problems mentioned might naturally have been called ‘solid problems’ before the
discovery of ‘solid loci,’ I do not think there is sufficient evidence to show that ‘solid problem’ was then or later a technical
term for a problem capable of reduction to ar cubic equation in the sense of implying that the geometrical equivalent of the
general cubic equation was investigated for its own sake, independently of its applications, and that it ever occupied such a
recognised position in Greek geometry that a problem would be considered solved so soon as it was reduced to a cubic
equation. If this had been so, and if the technical term for such a cubic was ‘solid problem,’ I find it hard to see how
Archimedes could have failed to imply something of the kind when arriving at his cubic equation. Instead of this, his words
rather suggest that he had attacked it as res integra. Again, if the general cubic had been regarded over any length of time as a
problem of independent interest which was solved by means of the intersections of conics, the fact could hardly have been
unknown to Nicoteles who is mentioned in the preface to Book IV. of the Conics of Apollonius as having had a controversy
with Oonon respecting the investigations in which the latter discussed the maximum number of points of intersection between
two conics. Now Nicoteles is stated by Apollonius to have maintained that no use could be made of the discoveries of Conon
for διορισμοί; but it seems incredible that Nicoteles could have made such a statement, even for controversial purposes, if
cubic equations then formed a recognised class of problems for the discussion of which the intersections of conics were
necessarily all-important.

I think therefore that the positive evidence available will not justify us in accepting the conclusions of Zeuthen except to the
following extent.

1. Pappus’ explanation of the meaning of the term ‘plane problem’ ( πί δον πρόβλημα) as used by the ancients can hardly
be right. Pappus says, namely, that “problems which can be solved by means of the straight line and circle may properly be
called plane (λ γοιτ àν ίκότωώ ίπ δα); for the lines by means of which such problems are solved have their origin in a
plane.” The words “may properly be called” suggest that, so far as plane problems were concerned, Pappus was not giving the



ancient definition of them, but his own inference as to why they were called ‘plane.’ The true significance of the term is no
doubt, as Zeuthen says, not that straight lines and circles have their origin in a plane (which would be equally true of some
other curves), but that the problems in question admitted of solution by the ordinary plane methods of transformation of areas,
manipulation of simple equations between areas, and in particular the application of areas. In other words, plane problems
were those which, if expressed algebraically, depend on equations of a degree not higher than the second.

2. When further problems were attacked which proved to be beyond the scope of the plane methods referred to, it would be
found that some of such problems, in particular the duplication of the cube and the trisection of an angle, were reducible to
simple equations between volumes instead of equations between areas; and it is quite possible that, following the analogy of
the distinction existing in nature between plane figures and solid figures (an analogy which was also followed in the distinction
between numbers as ‘plane’ and ‘solid’ expressly drawn by Euclid), the Greeks applied the term ‘solid problem’ to such a
problem as they could reduce to an equation between volumes, as distinct from a ‘plane problem’ reducible to a simple
equation between areas.

3. The first ‘solid problem’ in this sense which they succeeded in solving was the multiplication of the cube, corresponding
to the solution of a pure cubic equation in algebra, and it was found that this could be effected by means of curves obtained by
making plane sections of a solid figure, namely the cone. Thus curves having a solid origin were found to solve one particular
solid problem, which could not but seem an appropriate result; and hence the conic, as being the simplest curve so connected
with a solid problem, was considered to be properly termed a ‘solid locus,’ whether because of its application or (more
probably) because of its origin.

4. Further investigation showed that the general cubic equation could not be reduced, by means of stereometric methods, to
the simpler form, the pure cubic; and it was found necessary to try the method of conics directly either (1) upon the derivative
cubic equation or (2) upon the original problem which led to it. In practice, as e.g. in the case of the trisection of an angle, it
was found that the cubic was often more difficult to solve in that manner than the original problem was. Hence the reduction of
it to a cubic was dropped as an unnecessary complication, and the geometrical equivalent of a cubic equation stated as an
independent problem never obtained a permanent footing as the ‘solid problem’ par excellence.

5. It followed that solution by conics came to be regarded as the criterion for distinguishing a certain class of problem, and,
as conics had retained their old name of ‘solid loci,’ the corresponding term ‘solid problem’ came to be used in the wider
sense in which Pappus interprets it, according to which it includes a problem depending on a biquadratic as well as a problem
reducible to a cubic equation.

6. The terms ‘linear problem’ and ‘linear locus’ were then invented on the analogy of the other terms to describe
respectively a problem which could not be solved by means of straight lines, circles, or conics, and a curve which could be
used for solving such a problem, as explained by Pappus.

* Cf. Apollonius of Perga, p. 168 sqq.
* On the Sphere and Cylinder II. 4 (note at end).
* Apollonius of Perga, p. lxxiii.
* Die Lehre von den Kegelsclmitten, p. 226 sqq.
† p. ciii.
‡ Pappus VII. pp. 652, 662.
§ It is true that Proclus (p. 394, ed. Friedlein) gives a wider definition of “solid lines” as those which arise “from some section of a solid figure, as the cylindrical helix

and the conic curves”; but the reference to the cylindrical helix would seem to be due to some confusion.
* Proclus (ed. Friedlein), p. 272.
† The character of the curve may be described as follows. Suppose there are two rectangular axes Oy, Ox and that a straight line OP of a certain length (a) revolves

uniformly from a position along Oy to a position along Ox, while a straight line remaining always parallel to Ox and passing through P in its original position also moves
uniformly and reaches Ox in the same time as the moving radius OP. The point of intersection of this line and OP describes the Quadratrix, which may therefore be
represented by the equation

‡ Pappus IV. pp. 250—2.
* It is true that Archytas’ solution of the problem of the two mean proportionals used a curve of double curvature drawn on a cylinder; but this was not such a curve as

was likely to be investigated for itself or even to be regarded as a locus, strictly speaking; hence the solid origin of this isolated curve would not be likely to suggest
objections to the appropriation of the term ‘solid locus’ to conies.



CHAPTER VII.

ANTICIPATIONS BY ARCHIMEDES OF THE INTEGRAL CALCULUS.

IT has been often remarked that, though the method of exhaustion exemplified in Euclid XII. 2 really brought the Greek
geometers face to face with the infinitely great and the infinitely small, they never allowed themselves to use such conceptions.
It is true that Antiphon, a sophist who is said to have often had disputes with Socrates, had stated* that, if one inscribed any
regular polygon, say a square, in a circle, then inscribed an octagon by constructing isosceles triangles in the four segments,
then inscribed isosceles triangles in the remaining eight segments, and so on, “until the whole area of the circle was by this
means exhausted, a polygon would thus be inscribed whose sides, in consequence of their smallness, would coincide with the
circumference of the circle.” But as against this Simplicius remarks, and quotes Eudemus to the same effect, that the inscribed
polygon will never coincide with the circumference of the circle, even though it be possible to carry the division of the area to
infinity, and to suppose that it would is to set aside a geometrical principle which lays down that magnitudes are divisible ad
infinitum†. The time had, in fact, not come for the acceptance of Antiphon’s idea, and, perhaps as the result of the dialectic
disputes to which the notion of the infinite gave rise, the Greek geometers shrank from the use of such expressions as infinitely
great and infinitely small and substituted the idea of things greater or less than any assigned magnitude. Thus, as Hankel says
‡, they never said that a circle is a polygon with an infinite number of infinitely small sides; they always stood still before the
abyss of the infinite and never ventured to overstep the bounds of clear conceptions. They never spoke of an infinitely close
approximation or a limiting value of the sum of a series extending to an infinite number of terms. Yet they must have arrived
practically at such a conception, e.g., in the case of the proposition that circles are to one another as the squares on their
diameters, they must have been in the first instance led to infer the truth of the proposition by the idea that the circle could be
regarded as the limit of an inscribed regular polygon with an indefinitely increased number of correspondingly small sides.
They did not, however, rest satisfied with such an inference; they strove after an irrefragable proof, and this, from the nature of
the case, could only be an indirect one. Accordingly we always find, in proofs by the method of exhaustion, a demonstration
that an impossibility is involved by any other assumption than that which the proposition maintains. Moreover this stringent
verification, by means of a double reduciio ad absurdum , is repeated in every individual instance of the use of the method of
exhaustion; there is no attempt to establish, in lieu of this part of the proof, any general propositions which could be simply
quoted in any particular case.

The above general characteristics of the Greek method of exhaustion are equally present in the extensions of the method
found in Archimedes. To illustrate this, it will be convenient, before passing to the cases where he performs genuine
integrations, to mention his geometrical proof of the property that the area of a parabolic segment is four-thirds of the triangle
with the same base and vertex. Here Archimedes exhausts the parabola by continually drawing, in each segment left over, a
triangle with the same base and vertex as the segment. If A be the area of the triangle so inscribed in the original segment, the
process gives a series of areas

and the area of the segment is really the sum of the infinite series

But Archimedes does not express it in this way. He first proves that, if A1, A2)…An be any number of terms of such a series,
so that A1 = 4A2, A2 = 4A3,…, then

or

Having obtained this result, we should nowadays suppose n to increase indefinitely and should infer at once that ( )n−2

becomes indefinitely small, and that the limit of the sum on the left-hand side is the area of the parabolic segment, which must
therefore be equal to  A. Archimedes does not avow that he inferred the result in this way; he merely states that the area of the
segment is equal to  A, and then verifies it in the orthodox manner by proving that it cannot be either greater or less than  A.

I pass now to the extensions by Archimedes of the method of exhaustion which are the immediate subject of this chapter. It
will be noticed, as an essential feature of all of them, that Archimedes takes both an inscribed figure and a circumscribed
figure in relation to the curve or surface of which he is investigating the area or the solid content, and then, as it were,
compresses the two figures into one so that they coincide with one another and with the curvilinear figure to be measured; but
again it must be understood that he does not describe his method in this way or say at any time that the given curve or surface is
the limiting form of the circumscribed or inscribed figure. I will take the cases in the order in which they come in the text of



this book.

1.Surface of a sphere or spherical segment.

The first step is to prove (On the Sphere and Cylinder I. 21, 22) that, if in a circle or a segment of a circle there be
inscribed polygons, whose sides AB, BC, CD, … are all equal, as shown in the respective figures, then

(a) for the circle
(BB′ + CC′ + …) : AA′ = A′B : BA,

(b) for the segment
(BB′ + CC′ + … + KK′ + LM) : AM = A′B : BA.

Next it is proved that, if the polygons revolve about the diameter AA’, the surface described by the equal sides of the
polygon in a complete revolution is [I. 24, 35]

(a) equal to a circle with radius 

or (b) equal to a circle with radius 
Therefore, by means of the above proportions, the surfaces described by the equal sides are seen to be equal to

(a) a circle with radius ,
and (b) a circle with radius 
they are therefore respectively [I. 25, 37] less than

(a) a circle with radius AA’,

(b) a circle with radius AL.
Archimedes now proceeds to take polygons circumscribed to the circle or segment of a circle (supposed in this case to be

less than a semicircle) so that their sides are parallel to those of the inscribed polygons before mentioned (cf. the figures on pp.
38, 51); and he proves by like steps [I. 30, 40] that, if the polygons revolve about the diameter as before, the surfaces
described by the equal sides during a complete revolution are greater than the same circles respectively.

Lastly, having proved these results for the inscribed and circumscribed figures respectively, Archimedes concludes and
proves [I. 33, 42, 43] that the surface of the sphere or the segment of the sphere is equal to the first or the second of the circles
respectively.

In order to see the effect of the successive steps, let us express the several results by means of trigonometry. If, in the
figures on pp. 33, 47 respectively, we suppose 4n to be the number of sides in the polygon inscribed in the circle and 2n the
number of the equal sides in the polygon inscribed in the segment, while in the latter case the angle AOL is denoted by α, the
proportions given above are respectively equivalent to the formulae*

and 

Thus the two proportions give in fact a summation of the series

sin θ + sin 2θ + … + sin (n − 1 ) θ

both generally where nθ is equal to any angle a less than π, and in the particular case where n is even and θ = π/n.
Again, the areas of the circles which are equal to the surfaces described by the revolution of the equal sides of the

inscribed polygons are respectively (if a be the radius of the great circle of the sphere)



and

or

The areas of the circles which are equal to the surfaces described by the equal sides of the circumscribed polygons are
obtained from the areas of the circles just given by dividing them by cos2π/4n and cos2α/2n respectively.

Thus the results obtained by Archimedes are the same as would be obtained by taking the limiting value of the above
trigonometrical expressions when n is indefinitely increased, and when therefore cos π/4n and cos a/2n are both unity.

But the first expressions for the areas of the circles are (when n is indefinitely increased) exactly what we represent by the
integrals

and

Thus Archimedes’ procedure is the equivalent of a genuine integration in each case.
2. Volume of a sphere or a sector of a sphere.
The method does not need to be separately set out in detail here, because it depends directly on the preceding case. The

investigation proceeds concurrently with that of the surface of a sphere or a segment of a sphere. The same inscribed and
circumscribed figures are used, the sector of a sphere being of course compared with the solid figure made up of the figure
inscribed or circumscribed to the segment and of the cone which has the same base as that figure and has its vertex at the centre
of the sphere. It is then proved, (1) for the figure inscribed or circumscribed to the sphere, that its volume is equal to that of a
cone with base equal to the surface of the figure and height equal to the perpendicular from the centre of the sphere on any one
of the equal sides of the revolving polygon, (2) for the figure inscribed or circumscribed to the sector, that the volume is equal
to that of a cone with base equal to the surface of the portion of the figure which is inscribed or circumscribed to the segment
of the sphere included in the sector and whose height is the perpendicular from the centre on one of the equal sides of the
polygon.

Thus, when the inscribed and circumscribed figures are, so to speak, compressed into one, the taking of the limit is
practically the same thing in this case as in the case of the surfaces, the resulting volumes being simply the before-mentioned
surfaces multiplied in each case by  a.

3. Area of an ellipse.
This case again is not strictly in point here, because it does not exhibit any of the peculiarities of Archimedes’ extensions

of the method of exhaustion. That method is, in fact, applied in the same manner, mutatis mutandis, as in Eucl. XII. 2. There is
no simultaneous use of inscribed and circumscribed figures, but only the simple exhaustion of the ellipse and auxiliary circle
by increasing to any desired extent the number of sides in polygons inscribed to each (On Conoids and Spheroids, Prop. 11).

4. Volume of a segment of a paraboloid of revolution.
Archimedes first states, as a Lemma, a result proved incidentally in a proposition of another treatise (On Spirals, Prop.

11), viz. that, if there be n terms of an arithmetical progression h, 2h, 3h, …, then

Next he inscribes and circumscribes to the segment of the paraboloid figures made up of small cylinders (as shown in the
figure of On Conoids and Spheroids, Props. 21, 22) whose axes lie along the axis of the segment and divide it into any number
of equal parts. If c is the length of the axis AD of the segment, and if there are n cylinders in the circumscribed figure and their
axes are each of length A, so that c = nh, Archimedes proves that



Meantime it has been proved [Props. 19, 20] that, by increasing n sufficiently, the inscribed and circumscribed figure can
be made to differ by less than any assignable volume. It is accordingly concluded and proved by the usual rigorous method that

(Cylinder CE) = 2 (segment),

so that (segment ABC) =  (cone ABC).
The proof is therefore equivalent to the assertion, that if h is indefinitely diminished and n indefinitely increased, while nh

remains equal to c,

limit of h {h + 2h + 3A + … + (n − 1) h} = c2;

that is, in our notation,

Thus the method is essentially the same as ours when we express the volume of the segment of the paraboloid in the form

where κ is a constant, which does not appear in Archimedes’ result for the reason that he does not give the actual content of the
segment of the paraboloid but only the ratio which it bears to the circumscribed cylinder.

5. Volume of a segment of a hyperboloid of revolution.

The first step in this case is to prove [On Conoids and Spheroids, Prop. 2] that, if there be a series of n terms,

ah + h2, a. 2h + (2h)2, a . 3h + (3h)2, … a . nh + (nh)2,

and if (ah + h)2 + {a. 2h + (2h)2} + … + {a. nh + (nh)2} = Sn,

Next [Props. 25, 26] Archimedes draws inscribed and circumscribed figures made up of cylinders as before (figure on p.
137), and proves that, if AD is divided into n equal parts of length h, so that nh = AD, and if AA’ = a, then

and

The conclusion, arrived at in the same manner as before, is that

This is the same as saying that, if nh = 6, and if h be indefinitely diminished while n is indefinitely increased,

or

Now Sn = a(h + 2h + …+ nh) + {h2 + (2h)2 + … + (nh)2},



so that hSn = ah(h + 2h+…+ nh) + h {h2 + (2h)2 + … + (nh)2}.
The limit of the last expression is what we should write as

which is equal to

and Archimedes has given the equivalent of this integration.
6. Volume of a segment of a spheroid.
Archimedes does not here give the equivalent of the integration

presumably because, with his method, it would have required yet another lemma corresponding to that in which the results (β)
above are established.

Suppose that, in the case of a segment less than half the spheroid (figure on p. 142), AA’ = a, CD = c, AD = b; and let AD
be divided into n equal parts of length h.

The gnomons mentioned in Props. 29, 30 are then the differences between the rectangle cb + b2 and the successive
rectangles

ch + h2, c . 2h + (2h)2, … c . (n − 1) h + {(n − 1)h}2,

and in this case we have the conclusions that (if Sn be the sum of n terms of the series representing the latter rectangles)

and

and in the limit

Accordingly we have the limit taken of the expression

and the integration performed is the same as that in the case of the hyperboloid above, with c substituted for a.
Archimedes discusses, as a separate case, the volume of half a spheroid [Props. 27, 28]. It differs from that just given in

that c vanishes and b = a, so that it is necessary to find the limit of

and this is done by means of a corollary to the lemma given on pp. 107—9 [On Spirals, Prop. 10] which proves that

and
The limit of course corresponds to the integral

7. Area of a spiral.



(1) Archimedes finds the area bounded by the first complete turn of a spiral and the initial line by means of the proposition
just quoted, viz.

He proves [Props. 21, 22, 23] that a figure consisting of similar sectors of circles can be circumscribed about any arc of a
spiral such that the area of the circumscribed figure exceeds that of the spiral by less than any assigned area, and also that a
figure of the same kind can be inscribed such that the area of the spiral exceeds that of the inscribed figure by less than any
assigned area. Then, lastly, he circumscribes and inscribes figures of this kind [Prop. 24]; thus e.g. in the circumscribed figure,
if there are n similar sectors, the radii will be n lines forming an arithmetical progression, as h, 2h, 3h, … nh, and nh will be
equal to a, where a is the length intercepted on the initial line by the spiral at the end of the first turn. Since, then, similar
sectors are to one another as the square of their radii, and n times the sector of radius nh or a is equal to the circle with the
same radius, the first of the above formulae proves that

A similar procedure for the inscribed figure leads, by the use of the second formula, to the result that

The conclusion, arrived at in the usual manner, is that

and the proof is equivalent to taking the limit of

or of

which last limit we should express as

[It is clear that this method of proof equally gives the area bounded by the spiral and any radius vector of length b not being
greater than a; for we have only to substitute πb/a for π, and to remember that in this case nh = b. We thus obtain for the area

(2) To find the area bounded by an arc on any turn of the spiral (not being greater than a complete turn) and the radii
vectores to its extremities, of lengths b and c say, where c > b, Archimedes uses the proposition that, if there be an arithmetic
progression consisting of the terms

b, b + h, b + 2h, … b + (n − 1) h,

and if Sn = b2 + (b + h)2 + (b + 2h)2 +…+{b + (n − 1)h}2,

then

and

[On Spirals, Prop. 11 and note.]
Then in Prop. 26 he circumscribes and inscribes figures consisting of similar sectors of circles, as before. There are n − 1

sectors in each figure and therefore n radii altogether, including both b and c, so that we can take them to be the terms of the
arithmetic progression given above, where {b + (n − 1) h) = c. It is thus proved, by means of the above inequalities, that

and it is concluded after the usual manner that



Remembering that n − 1 = (c − b)/h, we see that the result is the same thing as proving that, in the limit, when n becomes
indefinitely great and h indefinitely small, while b + (n − 1) h = c,

that is, with our notation,

(3) Archimedes works out separately [Prop. 25], by exactly the same method, the particular case where the area is that
described in any one complete turn of the spiral beginning from the initial line. This is equivalent to substituting (n − 1) a for b
and na for c, where a is the radius vector to the end of the first complete turn of the spiral.

It will be observed that Archimedes does not use the result corresponding to

8. Area of a parabolic segment.
Of the two solutions which Archimedes gives of the problem of squaring a parabolic segment, it is the mechanical solution

which gives the equivalent of a genuine integration. In Props. 14, 15 of the Quadrature of the Parabola it is proved that, of
two figures inscribed and circumscribed to the segment and consisting in each case of trapezia whose parallel sides are
diameters of the parabola, the inscribed figure is less, and the circumscribed figure greater, than one-third of a certain triangle
(EqQ in the figure on p. 242). Then in Prop. 16 we have the usual process which is equivalent to taking the limit when the
trapezia become infinite in number and their breadth infinitely small, and it is proved that

The result is the equivalent of using the equation of the parabola referred to Qq as axis of x and the diameter through Q as
axis of y, viz.

py = x (2a − x),

which can, as shown on p. 236, be obtained from Prop. 4, and finding

where y has the value in terms of x given by the equation; and of course

The equivalence of the method to an integration can also be seen thus. It is proved in Prop. 16 (see figure on p. 244) that, if
qE be divided into n equal parts and the construction of the proposition be made, Qq is divided at O1, O2, … into the same
number of equal parts. The area of the circumscribed figure is then easily seen to be the sum of the areas of the triangles

QqF, QR1F1, QR2F2 ···

that is, of the areas of the triangles

QqF, QO1R1, QO2D1 ···

Suppose now that the area of the triangle QqF is denoted by Δ, and it follows that



Similarly we obtain

Taking the limit we have, if A denote the area of the triangle EqQ, so that A = nΔ,

If the conclusion be regarded in this manner, the integration is the same as that which corresponds to Archimedes’ squaring
of the spiral.

* Bretschneider, p. 101.
† Bretschneider, p. 102.
‡ Hankel, Zur Geschichte der Mathematik im Alterthum und Mittelalter, p. 123.
* These formulae are taken, with a slight modification, from Loria, Il periodo aureo della geometria greca, p. 108.



CHAPTER VIII.

THE TERMINOLOGY OF ARCHIMEDES.

So far as the language of Archimedes is that of Greek geometry in general, it must necessarily have much in common with
that of Euclid and Apollonius, and it is therefore inevitable that the present chapter should repeat many of the explanations of
terms of general application which I have already given in the corresponding chapter of my edition of Apollonius’ Conics*.
But I think it will be best to make this chapter so far as possible complete and selfcontained, even at the cost of some slight
repetition, which will however be relieved (1) by the fact that all the particular phrases quoted by way of illustration will be
taken from the text of Archimedes instead of Apollonius, and (2) by the addition of a large amount of entirely different matter
corresponding to the great variety of subjects dealt with by Archimedes as compared with the limitation of the work of
Apollonius to the one subject of conics.

One element of difficulty in the present case arises out of the circumstance that, whereas Archimedes wrote in the Doric
dialect, the original language has been in some books completely, and in others partially, transformed into the ordinary dialect
of Greek. Uniformity of dialect cannot therefore be preserved in the quotations about to be made; but I have thought it best,
when explaining single words, to use the ordinary form, and, when illustrating their use by quoting phrases or sentences, to
give the latter as they appear in Heiberg’s text, whether in Doric or Attic in the particular case. Lest the casual reader should
imagine the paroxytone words ε θεíαι, διαμέτροι, π σίται, π σούται, σσείται, δυνάνται, πτéται, καλ ίσθαι, κ ίσθαι and
the like to be misprints, I add that the quotations in Doric from Heiberg’s text have the unfamiliar Doric accents.

I shall again follow the plan of grouping the various technical terms under certain general headings, which will enable the
Greek term corresponding to each expression in the ordinary mathematical phraseology of the present day to be readily traced
wherever such a Greek equivalent exists.

Points and lines.
A point is σηµεîου, the point B τò B σηµεîου or τò B simply ; a point on (a line or curve) σηµεîου πí (with gen.) or ν ;

a point raised above (a plane) σηµεîου µετέωρον any two points whatever being taken δύο σημ ίων λαμβανομ νων 
ποιωνο ν.

At a point (e.g. of an angle) πρòς (with dat.), having its vertex at the centre of the sphere κορυϕήυ éχων πρòς τ  κéντρω τ
ς σφαίρας; of lines meeting in a point, touching or drviding at a point, etc., κατά (with acc.), thus AE is bisected at Z is  AE

δίχα τ μνέται κατà τò Ζ ; of a point falling on or being placed on another πí or κατά (with acc.), thus Ζ will fall on Γ, τô µèυ
Z πí τò Γ π σ ίται, so that E lies on Δ, στε τô µéυ E, κατά τò Δ κ ίσθαι.

Particular points are extremity πέρας, vertex κορυøή, centre κέντρον, point of division διαίρ σις, point of meeting
σύμπτωσις, point of section τομή, point of bisection διχοτομία, the middle point τò μέσον; the points of division Η, Ι, Κ,
τά τ υ διαιρ σίων σαµεîα τά Η, Ι, Κ ; let B be its middle point μ σον δè α τâς στω τòΒ ; the point of section in which (a
circle) cuts  τομά, καθ’ υ τ μν ι.

A line is γραμμή, a curved line καμπύλη γραμμή, a straight line ε θεîα with or without γραμμή. The straight line ΘΙΚΛ,
 θΙΚΛ ε θε α ; but sometimes the older expression is used, the straight line On which ( πí with gen. or dat. of the pronoun)

are placed certain letters, thus let it be the straight line M, éστω ø’  τò Μ, other straight lines Κ, Λ, αλλαι γραμμαί, ø’
αν τά Κ , Λ. The straight lines between the points αι µεταξύ τ ύ σημ ίων ήεîαι, of the lines which have the same
extremities the straight line is the least τ ν τάα τά π ρατα χονσ ν γραµµ ν λαχíστην ειναι τήν ε θεîαν, Straight lines
cutting one another ε θεíαι τ μνούσαι άλλάλας.

For points in relation to lines we have such expressions as the following: the points Γ, θ, Μ are on a straight line π’ ε
Γεíας τâς,Δ θ, μ σαμεíα, the point of bisection of the straight line containing the centres of the middle magnitudes 
διχοτομία τ ς ε θεíας τ ς χούσας τά κ ντρα τ ν µéσων µεγεθéων μ σων μ γ θ ων. A very characteristic phrase for at a
point which divides the straight line in such a proportion that… is πí τ ς ε θεíας διαιρ θ ίσας στε…) similarly πí τ ς χε
τμαθ ίσας o τως, στε. A certain point will be on the straight line… dividing it so that… σσεíαι…διαιρ ον δίαιρéoυ o
τως τώυ ε θεîαυ, στε…

The middle point of a line is often elegantly denoted by an adjective in agreement; thus at the middle point of the segment 
πί μ σον το  τμάματος, (a line) drawn from Γ to the middle point of άπó το  , Γ πί μ σαν τάν EB χϕεîσα, drawn to the

middle point of the base πί μ σαν τάυ βάσιν γoµéυα.
A straight line produced is the (straight line) in the same straight line with it ή π’ ε θεíας α τ . In the same straight



line with the axis πí τ ς α  τ εíας τ  αξoνι. Of a straight line falling on another line κατά (with gen.) is used, e.g. πίπτονσι
κατ α τ ς; πí (with acc.) is also used of a straight line placed on another, thus if εη be placed on βΔ, τ θ ίσας τ ς EH πί τάν
ΒΔ.

For lines passing through points we find the following expressions: will pass through ν, ηξει διά το  ν; will pass through
the centre διά το  κéυτρον πορεύσεται κ ντρον πορ ύσ ται, will fall through θ π σ ίται διά το  θ, verging towards  B ν
ύονσα πί τ ó B , pass through the same point πí τó α τó σαµεîου ρΧ the diagonals of the parallelogram fall (i.e. meet) at
θ, κατά δè τó δè τó Θ αι διάμ τροι το  παραλληλογράμμον πίπτοντι; ΕΖ (passes) through the points bisecting AB, ΓΔ, δè
το  διχοτομίαν το  AB, ΓΔ  EZ. The verb εiµi is also used of passing through, thus σσεíται δή α τά διά τo  θ.

For lines in relation to other lines we have perpendicular to κάθ τος πí (with acc.), parallel to παράλληλος with dat.
or παρά. (with acc.); let Κλ be (drawn) from Κ parallel to ΓΔ, πó K παρά τάυ ΓΔ πó ΚΛ.

Lines meeting one another σνμπίπτονσαι λλήλαις the point in which ΖΗ, ΜΝ produced meet one another and ΑΓ, τí
σηµεîον καθ’  τó,σηµεîoν σνμβάλλονσιν κβαλλóµενι ΖΗ, ΜΝ λλήλαις τε καϕ’ ΑΓ; so as to meet the tangent στε 
µπτε let straight lines be drawn parallel to AΓ to meet the section of the cone áχθωυ ε νεί παρά τάυ ΑΓ éστε πατί τάυ
κώνον τομάν, to draw a straight line to meet its circumference πoτι τo  περιφερειαν α τo , the line drawn to meet 
ποτιπεπo πα, let AΕ, AΔ be drawn from the point A to meet the spiral and produced to meet the circumference of the circle
ποτιπιπτόντων πó εο  A σαμείου πoτί εάυ éλικα αι ΑΕ, ΑΔ καί κπιπιπτóυτωυ πoτί τo  κύκλον περιφ ρειαν; until it meets
θA in ε, éστε κα συµπéση τ  θA κατά ε (of a circle).

(The straight line) will fall outside (i.e. will extend beyond) Ρ, κτòς τo  Ρ πεσεî τι; will fall within the section of the
figure éυτòς πεσούνται τ ς τo  σχήματος τoµή ς.

The (perpendicular) distance between (two parallel lines) ΑΖ, ΒΗ, τó διάστημα το ν ΑΖ, ΒΗ. Other ways of expressing
distances are the following: the magnitudes equidistant from the middle one τά ισον πéχοντα πí το  μ σον μεγ θεα, are
at equal distances from one another ίσα π’ λλáλωυ δι στακεν; the segments (lengths) on λη equal to ν, τ  τà èυ λη
τμάματα τ  ν; greater by one segment èυί τμάματι μείζων.

The word εύθîα itself is also often used in the sense of distance; cf. the terms πρώτη εύθîα etc. in the book On Spirals,
also  εύθîα κ ντρου κ ντρου τ σ γ ς the distance between the centre of the sun and the centre of the earth.

The word for join is πιςευζεγνύω or πιςευζεγυνµι the straight line joining the points of contact τς ϕàς πιζευγνύονσα
εύθîα, βΔ when joined  βΔ ζενχεîσα βΔ let ΕΖ join the points of bisection of ΑΔ, βΓ,  δè ΕΖ πιςευζεγντω διχοτομίας τ
ν ΑΔ, βΓ. In one case the word seems to be used in the sense of drawing simply, εí κα ε θεîα πιζενχθ .

Angles.
An angle is γωνία, the three kinds of angles are right óρθή , acute óξεîα, obtuse µβλεîα; right-angled etc. óρθογώυιος,

óξνγώυιος, µβλνγώυιος equiangular ισoγώνιος ; with an even number of angles ρτιóλωος or ρτιολώος.
At right angles to óρθáς πρός (with acc.) or πρóς óρθάς (with dat. following); thus if a line be erected at right angles to

the plane óρθάς ποτί τò πίπεδου, the planes are at right angles to one another πρτ’ óρθάς àÿÿαÿαις , being at right angles
to ΑΒΓ, πρóς óρθάς ώυ τ  ΑΒΓ; ΚΓ, Ξλ are at right angles to one another πoτ’ óρθάς υτι λλάλαις ΚΓ, Ξλ, to cut at
right angles τ μνειν τéµνειυ πρóς óρθάς. The expression making right angles with is also used, e.g. óρθάς γωνίας ποτí τάυ
AΒ.

The complete expression for the angle contained by the lines ΑΗ, ΑΓ is  γωνία  περιεχομ να ύπß τώυ ΑΗ, ΑΓ; but
there are a great variety of shorter expressions, γωνία itself being often understood; thus the angles Δ, Ε, Α, Β, αι Δ, Ε, Α, Β
γωνίαι; the angle at θ, γωυιαι θ; the angle contained by ΑΔ, ΔΖ,  γωνία  ΑΔ, ΔΖ; the angle ΔΗΓ, ή πó τ υ ΔΗΓ γωνία, 
πó ΔΗΓ (with or without γωνία).

Making the angle Κ equal to the angle Θ, γωνίαν σοιο σα τάν Κ ίσαυ τ  Θ; the angle into which the sun fits and
ivhich has its vertex at the eye γωνία, εις ; áλιος υαρµóζει τάν κορυϕàν εχονουσαν ποτί τ  óψει of the sides subtending
the right angle (hypotenuses) τ ν πà τάν ρθάν γωνίαν ποτειυοισ ε, they subtend the same angle ντί τ ν πà τάν
γωνίαν.

If a line through an angular point of a polygon divides it exactly symmetrically, the opposite angles of the polygon,αί 
πεναντιον γωνίαι το  πολνγώνον, are those answering to each other on each side of the bisecting line.

Planes and plane figures.



A plane πιπεδον; the plane through ΒΔ, τò πιπεδον ΒΔ, or τí διά τ ς ΒΔ, plane of the base πíπεδοον τ ς βάσεως,
plane (i.e. base) of the cylinder τ μνον κυλίνδρου; cutting plane σí σεδου τ μνον, tangent plane σíσεδον σιψα ον; the
intersection of planes is their common section κoιυή τομή.

In the same plane as the circle υ τ  α τ  πιπéδ  κύκλ .
Let a plane be erected on ΠΖ at right angles to the plane in which Αβ, ΓΔ are πó τ ς ΠΖ σíσεδον νεστακíτω, ρθíν

σοτí σíσεδον τí ν  ντι αι ΑΒ, ΓΔ.
The plane surface ή  πίπεδος ( πιϕáυια), a plane segment ή  πίπεδος τµ µα, a plane figure σχ µα ή  πίπεδος.
A rectilineal figure ε θύγραµµoυ(σχ µα), a side πλευρά, perimeter ή περίμετρος, similar οµοιος, similarly situated 

µοίως κείμενος.
To coincide with (when one figure is applied to another), ϕνρµóζειυ followed by the dative or πί (with acc.); one part

coincides with the other ϕνρµóζειυ; the plane through νΖ coincides with the plane through ΑΓ, τó πίπεδoυ τó κατά τάν
νΖ ϕνρµóζειυ τ  καεá δω τ  κατά τάν ΑΓ. The passive is also used; if equal and similar plane figures coincide with one
another τ υ ίσωυ καί µηάεων σχημάτων πίπεδου ϕαρµοζοµéνων π’ áλλαλα.

Triangles.
A triangle is τρίγωνον, the triangles bounded by (their three sides) τά περιεχόμενα τρίγωνα πò…. A right-angled

triangle τρίγωνον ρθoγώνιoν, one of the sides about the right angle μία τ ν περì τήν ρθήν. The triangle through the axis
(of a cone) τí διά τε  αξους τò διà το  àξονοςτρίγωνον.

Quadrilaterals.
A quadrilateral is a four-sided figure (τετράπλενρον) as distinguished from a four-angled figure, τετράγωνον, which

means a square. A trapezium, τραπ ζιον, is in one place more precisely described as a trapezium having its two sides
parallel τραπ ζιον τάς δύο πλενράς éχον παραλλάλονς λλάλαις.

A parallelogram παραλληλόγραμμον; for a parallelogram on a straight line as base πì (with gen.) is used, thus the
parallelograms on them are of equal height σνìν ìσούψη τà παραλληλόγραμμα τà π’. A diagonal of a parallelogram is
διάμετρος, the opposite sides of the parallelogram αì κατ’ νατìον παραλληλόγραμμον πλενραί.

Rectangles.
The word generally used for a rectangle is χωρίον (space or area) without any further description. As in the case of

angles, the rectangles contained by straight lines are generally expressed more shortly than by the phrase τà περιεχόμενα
χωρία χωρìον either χωρίον may be omitted or both χωρίον and περιεχόμενον, thus the rectangle ΑΓ, ΓΕ may be any of the
following, τò ρò τ τ ΑΓ, ΓΕ, τò ύρò ΑΓ, ΓΕ, τò ύρò ΑΓΕ, and the rectangle under θΚ, ΑΗ is τò ύρò θΚ καì τ ς ΑΗ.
Rectangles θ, ι, Κ, λ, χωρία ν οις τά (or ϕ ώνéκαστον τ ν) θ, Ι, Κ, Λ.

To apply a rectangle to a straight line (in the technical sense) is παραβάλλειν, and παραπίπτω is generally used in place
of the passive; the participle παρακείμενος is also used in the sense of applied to. In each case applying to a straight line is
expressed by παρά (with acc.). Examples are, areas which we can apply to a given straight line (i.e. which we can transform
into a rectangle of the same area) χωρία,  δννάμεθα παρά τάν δοθεîσαν ε θεîαν παραπεπτωκéτω, let a rectangle be
applied to each of them παραπεπτωκ τω παρ’ κάστν α τ ν χωρίον; if there be applied to each of them a rectangle
exceeding by a square figure, and the sides of the excesses exceed each other by an equal amount  (i.e. form an arithmetical
progression) εì κα παρ’ κάσταν παραπ ση τι χωρίον τω, ìσω λλάλαν περεχούσαι.

The rectangle applied is παράβλημα.

Squares.
A square is τετράγωνον, a square on a straight line is a square (erected) from it ( πò). The square on ΓΞ, τò πò τ ς ΓΞ

τετράγωνον, is shortened into τò πò τ ς ΓΞ, or τò πò ΓΞ simply. The square next in order to it (when there are a number of
squares in a row) is τò παρ’ α τ  τετράγωνον or τò χòµενον τετράγωνον.

With reference to squares, a most important part is played by the word δύναμις and the various parts of the verb δύναμαι,
δύναμις expresses a square (literally a power); thus in Diophantus it is used throughout as the technical term for the square of



the unknown quantity in an algebraical equation, i.e. for x2. In geometrical language it is the dative singular δυνάμει which is
mostly used; thus a straight line is said to be potentially equal, δυνάμει ìσον, to a certain rectangle where the meaning is that
the square on the straight line is equal to the rectangle; similarly for the square on ΒΑ is less than double the square on AΚ
we have ή ΒΑ λάσσων σσιν ή διπλάσίων δυνάμει τ ς ΑΚ. The verb δύνασθαι (with or without ìσον) has the sense of
being δυνάμει ìσα , and, when δύνασθαι is used alone, it is followed by the accusative; thus the square (on a straight line) is
equal to the rectangle contained by… is (ε θεîα) δύναται τ  περεχοµéνω πò…; let the square on the radius be equal to the
rectangle βΔ, ΔΖ, ή κ το  κ ντρου δυνάσθω τò πò τ τ ΒΔΖ, (the difference) by which the square on  ΖΓ is greater than
the square on half the Other diameter  µεîζον δυνάται  ΖΓ τ ς ήµισειας τ ς τéρας διαμ τρου.

A gnomon is γνώμων, and its, breadth (πλάτος) is the breadth of each end; a gnomon of breadth equal to ΒΙ, γνώμων
πλάτος χων ìσον τ  ΒΙ, (a gnomon) whose breadth is greater by one segment than the breadth of the gnomon last taken
away ού πλάτος νì τμάματι µεîζον το  πλάτεος το  πρì α το  ϕαιρονµéνον γνώμονος.

Polygons.
A polygon is πολύγωνον, an equilateral polygon is ισìπλενρον , a polygon of an even number of sides or angles 

πτιìπλενρον or πτιìγωνον; a polygon with all its sides equal except ΒΔ, ΔA, ìσας éχον τάς πλενπάς χωρìς τ υ ΒΔA; a
polygon with its sides, excluding the base, equal and even in number τάς πλενράς χον τ ς βάσεως ìσας και ρτìονς; an
equilateral polygon the number of whose sides is measured by four πολύγωνον ισìπλενρον, ον αι πλενραì πì , τετράδος
µετρο νται, let the number of its sides be measured by four τì πλενραì τετράδος. A chiliagon χιλιάγωνον.

The straight lines subtending two sides of the polygon (i.e. joining angles next but one to each other) αι πì δύο πλενράς
το  πολυγώνου ύποτείνουσαι the straight line subtending one less than half the number of the sides ή ποτεìνονσα τάς
µι  λάσσονας τ ν ήµισεώγ.

Circles.
A circle is κύκλος, the circle ψ is ò ψ κύκλος or ò κύκλος ν  ψ, let the given circle be that drawn below éστω ò

κύκλος ò ποκεìµενος.
The centre is κ ντρον, the circumference περιø ρεια, the former word having doubtless been suggested by something

stuck in and the latter by something, e.g. a cord stretched tight, carried round the centre as a fixed point and describing a circle
with its other extremity. Accordingly περιφ ρεια is used for a circular arc as well as for the whole circumference; thus the arc
ΒΛ; is ή ΒΛ περιφ ρεια, the (part of the) circumference of the circle cut off by the same (straight line) ή κύκλου περιφ
ρεια ή πò τ ς α τ ς ποτεµνοµéνη . Though the circumference of a circle is also sometimes called its perimeter (ή
περίμετρος) in the treatises On the Sphere and Cylinder and on the Measurement of a Circle, the word does not seem to have
been used by Archimedes himself in this sense; he speaks, however, in the Sand-reckoner of the perimeter of the earth
(περίμετρος τ ς γ ς).

The radius is ή κ το  κ ντρου simply, and this expression without the article is used as a predicate as if it were one
word; thus the circle whose radius is θΕ is ò κύκλος òι κ κ ντρου  θΕ; βΕ is a radius of the circle ή δé βΕ κ το  κ ντρου
στι το  κύκλου.

A diameter is διάμετρος, the circle on ΔΕ as diameter ò περì διάμετρον τήν ΔΕ κύκλος.
For drawing a chord of a circle there is no special technical term, but we find such phrases as the following: άν εις τòτ

κύκλον ε θεîα γραµµή µπéση if in a circle a straight line be placed, and the chord is then the straight line so placed ή 
µπεσο σα , or quite commonly ή ν τ  κύκλω (ε θεîα) simply. For the chord subtending one 656th part of the
circumference of a circ le we have the following interesting phrase,  ποτεìνονσα éν τµ µα διαιρεθείσας τ ς το  ΑΒΓ
κύκλου περιφερείας éς χνς’.

A segment of a circle is τµ µα κύκλου ; sometimes, to distinguish it from a segment of a sphere, it is called a plane
segment τµ µα πìπεδον . A semicircle is ήµικύκλιον ; a segment less than a semicircle cut off by ΑΒ, τµ µα éλαππον
ήµικύκλιον ò ποτéµνει ή ΑΒ. The segments on ΑΒ, ΕΒ (as bases) are τά éπì τ τ ΑΒ, ΕΒ τμήματα; but the semicircle on
ΖΗ as diameter is τì διάμετρον ΖΗ or τé πεπì τάν ΖΗ simply. The expression the angle of the semicircle,  το  ήµικύκλιον
(γωνία), is used of the (right) angle contained by the diameter and the arc (or tangent) at one extremity of it.

A sector of a circle is τομεύς or, when it is necessary to distinguish it from what Archimedes calls a ‘solid sector,’ 



πιπεδος τοµεύς κύκλου a plane sector of a circle. The sector including the right angle (at the centre) is  τοµεύς  τάν 
ρθάν γωνίαν περι χων. Either of the radii bounding a sector is called a side of it, πλενρά; each of the sectors (is) equal to
the sector which has a side common (with it) éκαστος τ ν τομ ων éχοντι πλεράν τοµεî ; a sector is sometimes regarded as
described on one of the bounding radii as a side, thus similar sectors have been described on all (the Straight lines) 
ναγεγπαϕάται πò πασ ν μοίοι τομ ες.

Of polygons inscribed in or circumscribed about a circle γγράϕειν or υ and περιγράφειν περί (with acc.) are used ; we
also find περιγεγραμμ νος used with the simple dative, thus τé περιγεγραμμ ν σχ µα τ  τοµεî is the figure circumscribed to
the sector. A polygon is said to be inscribed in a segment of a circle when the base of the segment is one side and the other
sides subtend arcs making up the circumference; thus let a polygon be inscribed on ΑΓ in the segment ΑΒΓ, πι τ ι ΑΓ
πολύγωνον εγγεγράφθω εις τò ΑΒΓ τµ µα. A regular polygon is said to be inscribed in a sector when the two radii are two
of the sides and the other sides are all equal to one another, and a similar polygon is said to be circumscribed about a sector
when the equal sides are formed by the tangents to the arc which are respectively parallel to the equal sides of the inscribed
polygon and the remaining two sides are the bounding radii produced to meet the adjacent tangents. Of a circle circumscribed
to a polygon περιλαμβάνειν is also used; thus πολύγωνον κύκλος περιγεγραμμ νος περιλαμβαν τω περì τò α  τò κ ντρον
γινόμενος, as we might say let a circumscribed circle be drawn with the same centre going round the polygon.  Similarly the
circle ΑΒΓΔ containing the polygon  ΑΒΓΔ κύκλος éχωυ πολύγωνον.

When a polygon is inscribed in a circle, the segments left over between the sides of the polygon and the subtended arcs are
περιλειπόμενα τμήματα; when a polygon is circumscribed to the circle, the spaces between the two are variously called τά
περίλειπόμενα τ ς περιγραϕ ς τμήματα, τά περιλειπόμενα σχήματα, τά περιλείμματα or τά πολεìµµατα.

Spheres, etc.
In connexion with a sphere (σøαîρα) a number of terms are used on the analogy of the older and similar terms connected

with the circle. Thus the centre is κεντρον, the radius ή κ το  κ ντρον, the diameter ή διάμετρος. Two segments, τμήματα
σφαίρας or τμήματα σφαιρικά, are formed when a sphere is cut by a plane; a hemisphere is ήμισφαίριον; the segment of
the sphere at Γ, τì κατά τì Γ τµ µα τ ς σφαίρας; the segment on the side of ΑΒΓ, τò πò ΑΒΓ τµ µα the segment including
the circumference ΒΑΔ, τò κατά Βήν ΒΑΔ περιφ ρειαν τµ µα. The curved surface of a sphere or segment is σιϕάνεια ; thus
of spherical segments bounded by equal surfaces the hemisphere is greatest  is τ  ìση τιϕαν περιεχομ νων σφαιρικών
τμημάτων. The terms base (βάσις), vertex (κορνφή) and height ( ψος) are also used with reference to a segment of a sphere.

Another term borrowed from the geometry of the circle is the word sector (τομεύς) qualified with the adjective στερεός
(solid). A solid sector (τοµεύς στερεός) is defined by Archimedes as the figure bounded by a cone which has its vertex at the
centre of a sphere and the part of the surface of the sphere within the cone. The segment of the sphere included in the sector is
τè τµ µα τ ςσϕαιρας τò ν τ  τοµεî or τò κατά τòν τοµéα.

A great circle of a sphere is  μ γιστος κύκλος τ ν ν τ  σϕαιρα and often  μ γιστος κύκλος alone.
Let a sphere be cut by a plane not through the centre τετμήσθω σϕαîρα µή διά το  κ ντρον πιπéδω a sphere cut by a

plane through the centre in the circle ΕΖΗθ, σϕαιρα πιπéδω τετμημ νη διά το  κύκλος ΕΖΗθ κύκλον.

Prisms and pyramids.
A prism is πρîσµα, a pyramid πνραμίς. As usual, ναγράϕειν πò is used of describing a prism or pyramid on a

rectilineal figure as base; thus let a prism be described on the rectilineal figure (as base) ναγεγράϕήω πò ε ήνγράµµον
πρîσµα , on tlie polygon circumscribed about the circle  A let a pyramid be set up σò το  σερι τòν A κύκλον περιγεγραμμ
νου πολυγώνου σνραµις νεστάτω ναγεαραµµéνη. A pyramid with an equilateral base ΑΒΓ is σνραµìς ισòπλενρον

ΑΒΓ.
The surface is, as usual, σιϕάνεια and, when any particular face or a base is excluded, some qualifying phrase has to be

used . T hus the surface of the prism consisting of the parallelograms (i.e. excluding the bases) ή πιϕάνεια
παραλληλογράμμων συγκειμ νη; the surface (of a pyramid) excluding the base or the triangle ΑΕΓ, ή σιϕάνεια χωρς τ ς
βάσεως or το  ΑΕΓ τριγώνου.

The triangles bounding the pyramid τά περι χοντα τρίγωνα την ττυραμίδα (as distinct from the base, which may be
polygonal).

Cones and solid rhombi.



The Elements of Euclid only introduce right cones, which are simply called cones without the qualifying adjective. A cone
is there defined as the surface described by the revolution of a rightangled triangle about one of the sides containing the right
angle. Archimedes does not define a cone, but generally describes a right cone as an isosceles cone (κ νος ισοσκελής),
though once he calls it right ( ρήòς). J. H. T. Müller rightly observes that the term isosceles applied to a cone was suggested
by the analogy of the isosceles triangle, but I doubt whether such a cone was thought of (as he supposes) as one which could be
described by making an isosceles triangle revolve about the perpendicular from the vertex on the base; it seems more natural to
connect it with the use of the word side (πλευρά) by which Archimedes designates a generator of the cone, a right cone being
thus directly regarded as a cone having all its legs equal. The latter supposition would also accord better with the term scalene
cone (κ νος σκαληνός) by which Apollonius denotes an oblique circular cone; such a cone could not of course be described
by the revolution of a scalene triangle. An oblique circular cone is simply a cone for Archimedes, and he does not define it;
but, while he speaks of finding a cone with a given vertex and passing through every point on a given ‘section of an acute-
angled cone’ [ellipse], he regards the finding of the cone as being equivalent to finding the circular sections, and we may
therefore conclude that he would have defined the cone in practically the same way as Apollonius does, namely as the surface
described by a straight line always passing through a fixed point and moving round the circumference of any circle not in the
same plane with the point.

The vertex of a cone is, as usual, κορυφή, the base βάσις, the axis àξων and the height ύψος ; the cones are of the same
height ύψος. A generator is called a side (πλευρά); if a cone be cut by a plane meeting all the generators of the cone ει κα
κ νος πιπéδδω τµαθ  συμπίπτοντι πάσαις ταîς το  κώνον σλενρας.

The surface of the cone excluding the base ή σιϕάνεια το  κώνον χωρìς τ ς βάσεως; the conical surface between
(two generators) ΑΔ, ΔΒ, κωνική σιϕάνεια ή µετξύ ΑΔ Β.

There is no special name for what we call a frustum of a cone or the portion intercepted between two planes parallel to
the base; the surface of such a frustum is simply the surface of the cone between the parallel planes ή πιϕάυεια το  κώνον
µεταξύ τ ν παραλλήλων πιπéδων.

A curious term is segment of a cone ( σòτµαµα κώνον), which is used of the portion of any circular cone, right or
oblique, cut off towards the vertex by any plane which makes an elliptic and not a circular section. With reference to a segment
of a cone the axis (àξων) is defined as the straight line drawn from the vertex of the cone to the centre of the elliptic base.

As usual, ταγράϕειν α’σò is used of describing a cone on a circle as base. Similarly, a very common phrase is α’πò το
κνκλον κ νος let there be a cone on the circle (as base).

A solid rhombus (ρòµβος στερεός) is the figure made up of two cones having their base common, their vertices on
opposite sides of it, and their axes in one straight line. A rhombus made up of isosceles cones ρòµβον ξ ικοκκελ ν κώνων
συγκείμενος, and the two cones are spoken of as the cones bounding the rhombus οι κ νοι οι περιεχοντες τòν ρòµβον.

Cylinders.
A right cylinder is κύλινδρος ρθòς, and the following terms apply to the cylinder as to the cone: base βάσις, one base

or the other ή τéρα βάσις, of which the circle ΑΒ is a base and ΓΔ opposite to it ον βάσις µéν  ΑΒ κύκλος, πεαντìον
δé  ΓΔ) axis αξπν, height ύψος, generator πλενρά. The cylindrical surface cut off by (two generators) ΑΓ, βΔ, ή 
πετεµυνοµéνη κνλιυδρκή πιϕάυεια πò τ τ ΑΓ, βΔ; the surface of the cylinder adjacent to the circumference  ΑΒΓ, ή 
πιϕάνεια το  κυλίνδρου ή κατά τήν ΑΒΓ περιφ ρειαν denotes the surface of the cylinder between the two generators drawn
through the extremities of the arc.

A frustum of a cylinder τόμος κυλίνδρου is a portion of a cylinder intercepted between two parallel sections which are
elliptic and not circular, and the axis (αξων) of it is the straight line joining the centres of the two sections, which is in the
same straight line with the axis of the cylinder.

Conic Sections.
General terms are κωνικ , στοιχ α elements of conics, τ  κωνικά (the theory of) conics. Any conic section κώνου τομ  

ποιαο ν. Chords are simply θ ίαι ν τ  το  κώνον τομ  γμέναι. Archimedes never uses the word axis ( ξων) with
reference to a conic; the axes are with him diameters (διάμ τροι), and διάμ τρος, when it has reference to a complete conic, is
used in this sense exclusively. A tangent is πιψαυοσ or ϕαπτομ νη (with gen.).

The separate conic sections are still denoted by the old names; a parabola is a section of a right-angled cone ρθογωνίον
κώνον τομή, a hyperbola a section of an obtuse-angled cone μβλνγωνίον κώνον τομή, and an ellipse a section of an acute-
angled cone ξνγωνίον κώνου τομή.



The parabola.
Only the axis of a complete parabola is called a diameter, and the other diameters are simply lines parallel to the

diameter. Thus parallel to the diameter or itself the diameter is παρ  τ ν διάμ τρον  α τ  διάμ τρος; ΔΖ is parallel to the
diameter  ΔΖ παρ  τ ν διάμ τρόν στι. Once the term principal or original (diameter) is used, ρχ (sc. διάμ τρος).

A segment of a parabola is τμ μα, which is more fully described as the segment bounded by a straight line and a section
of a rightangled cone τμ μα τò τ ρι χόμ νον πό τ  θ ίας κα  οογωνίον κώνου τομ ς. The word διάμ τρος is again used
with reference to a segment of a parabola in the sense of our word axis; Archimedes defines the diameter of any segment as
the line bisecting all the straight lines (chords) drawn parallel to its base τ ν δίχα τέμνονσαν τ ς θ ίας πάσας τ ς βάσιν α
το  γομ ας.

The part of a parabola included between two parallel chords is called a frustum τόμος ( πò ρθογωνίον; κώνου τομ ς 
ϕαιρúμ νος), the two chords are its lesser and greater base ( λάσσων and μ ίξων βάσις) respectively, and the line joining the
middle points of the two chords is the diameter (διάμ τρος) of the frustum.

What we call the latus rectum of a parabola is in Archimedes the line which is double of the line drawn as far as the axis
 διπλάσια τ ς μέχρι  ξονος. In this expression the axis ( ξων) is the axis of the right-angled cone from which the curve

was originally derived by means of a section perpendicular to a generator*. Or, again, the equivalent of our word parameter
(θα  ν δυνάνται α  πò τομ ς) is used by Archimedes as by Apollonius, meaning the straight line to which the rectangle
which has its breadth equal to the abscissa of a point and is equal to the square of the ordinate must be applied as base. The
full phrase states that the ordinates have their squares equal to the rectangles applied to the line equal to  Ν (or the
parameter) which have as their breadth the lines which they (the ordinates) cut off from ΔΖ (the diameter) towards the
extremity Δ, δυνάνται τ  παρ  τ ν σαν τ  Ν παραπίπτοντα πλάτος χοντα, ς α τα  θολαμβάνοντι πò τ ς ΔΖ θοτ  τò Δ
πέρας.

Ordinates are the lines drawn from the section to the diameter (of the segment) parallel to the base (of the segment) α  
πò τ ς τομ ς π  τ ν ΔΖ γομ ναι ΑΕ, or simply α  απ τ ς τομ ς. Once also the regular phrase drawn ordinate-wise τ
ταγμένως κατηγμ νη is used to describe an ordinate, as in Apollonius.

The hyperbola.
What we call the asymptotes (at α  σύμπτοι in Apollonius) are in Archimedes the lines (approaching) nearest to the

section of the obtuse-angled cone α  γγιοτα τ ς το  μβλυγωίον κώνου τoμ ς.
The centre is not described as such, but it is the point at which the livies nearest (to the curve) meet τò, σαμ ον κα   α  

γγιστα συμπίπτοντι.
This is a property of the sections of obtuse-angled cones το το γάρ στιν ν τα ς το  μβλυγωνίου κώνον τομα ς

σύμπτωμα.
The ellipse.
The major and minor axes are the greater and lesser diameters μ ίζων and λασσων διάμ τρος. Let the greater diameter

be ΑΓ, διάμ τρος δ  (α τ ς)  μ ν μ ίξων στω  ς τ  Α, Γ. The rectangle contained by the diameters (axes) τò π ρι χόμ
νον πò τ ν διαμέτρων. One axis is called conjugate (συζυγής) to the other: thus let the straight line Ν be equal to half of the
other diameter which is conjugate to ΑΒ,  δ  Ν θ α σα στω τ  μισ ί  τ ς τ ρας διαμέτρου,  στι συυγ ς τ  ΑΒ.

The centre is here κέντρον.
Conoids and Spheroids.
There is a remarkable similarity between the language in which Archimedes describes the genesis of his solids of

revolution and that used by Euclid in defining the sphere. Thus Euclid says: when, the diameter of a semicircle remaining
fixed, the semicircle revolves and retwrns to the same position from which it began to move, the included figure is a sphere
σϕα ρά στιν, ταν μικυκλίου μ νούσης τ ς διάμ τρου π ρι νχθ ν τò μικύκλιον ς τò α τò πάλιν ποκατασταθ , θ ν 
ρξατο ϕέρ σθ αι, τò π ριληϕθ ν òχ μα ; and he proceeds to state,that the axis of the sphere is the fixed straight line about
which the semicircle turns ξων δ  τ ς σϕαίρας ρτ ν  μένουσα έθ α, π ρ  ν μικύκλιον τò στρέφ ται. Compare with
this e.g. Archimedes’ definition of the right-angled conoid (paraboloid of revolution): if a section of a right-angled cone,
with its diameter (axis) remaining fixed, revolves and returns to the position from which it started , the figure included by
the section of the right-angled cone is called a right-angled conoid, and its axis is defined as the diameter which has
remavwed fixed,  κα ρθογωòου κώνου τομ  μ νούσας τ ς διαμέτρου π ρι ν χθ σα ποκατασταθ  πάλιν, θ ν ρμασ ν, τò
π ριλαϕθ ν σχ μα πò το  ρθογωνίον κώνου τομ  μωνούσας, τ ς δικωνικάμέτρου π ρι ν χθ σα ποκατασταθ  πάλιν, θ ν 

ρμασ ν, τò π ριλαϕθ ν σχ μα πò τ ς το  ρθογωνίον κώνου τομ ς ρθογώνιον κωνο ιδ ς καλ ίσθαι, κα  ξονα μ ν α το
τ ν μ μ νακο σαν διάμ τρον καλ ίσθαι, and it will be seen that the several phrases used are practically identical with those of



Euclid, except that ρμασ ν takes the place of ρξατο ϕέρ σθαι; and even the latter phrase occurs in Archimedes’ description
of the genesis of the spiral later on.

The words conoid κωνο ιδ  and spheroid σϕαιρο ιδ ς (σχ μα) are simply adapted from κ νος and σϕα ρα, meaning that
the respective figures have the appearance ( δος) of, or resemble, cones and spheres; and in this respect the names are
perhaps more satisfactory than paraboloid, hyperboloid and ellipsoid, which can only be said to resemble the respective
conics in a different sense. But when κωνο ιδές is qualified by the adjective right-angled ρθογώνιον to denote the paraboloid
of revolution, and by μβλυγώνιον obtuse-angled to denote the hyperboloid of revolution, the expressions are less logical, as
the solids do not resemble rightangled and obtuse-angled cones respectively; in fact, since the angle between the asymptotes
of the generating hyperbola may be acute, a hyperboloid of revolution would in that case more resemble an acute-angled cone.
The terms right-angled and obtuse-angled were merely transferred to the conoids from the names for the respective conics
without any more thought of their meaning.

It is unnecessary to give separately the definition of each conoid and spheroid; the phraseology is in all cases the same as
that given above for the paraboloid. But it may be remarked that Archimedes does not mention the conjugate axis of a
hyperbola or the figure obtained by causing a hyperbola to revolve about that axis; the conjugate axis of a hyperbola first
appears in Apollonius, who was apparently the first to conceive of the two branches of a hyperbola as one curve. Thus there is
only one obtuse-angled conoid in Archimedes, whereas there are two kinds of spheroids according as the revolution takes
place about the greater diameter (axis) or lesser diameter of the generating section of an acuteangled cone (ellipse); the
spheroid is in the former case oblong (παραμ κ ς σφαιρο ιδής) and in the latter case flat ( πιπλατ  σφαιρο ιδής).

A special feature is, however, to be observed in the description of the obtuse-angled conoid (hyperboloid of revolution),
namely that the asymptotes of the hyperbola are supposed to revolve about the axis at the same time as the curve, and
Archimedes explains that they will include an isosceles cone (κ νον σοσκ λέα π ριλαψούνται), which he thereupon defines
as the cone enveloping the conoid (π ριέχων τò κωνο ιδές). Also in a spheroid the term diameter (διάμ τρος) is appropriated
to the straight line drawn through the centre at right angles to the axis  (  δι  το  κέντρου πο  ρθ ς γομένα). The centre
of a spheroid is the middle point of the axis τò μέσον το  ξονος.

The following terms are used of all the conoids and spheroids. The vertex (κορνφή) is the point at which the axis meets
the surface τò, σαμ ον, κα   πτέται  ξων τ ς πιϕαν ίας the spheroid having of course two vertices. A segment (τμ μμα)
is a part cut off by a plane, and the base (βάσις) of the segment is defined as the plane (figure) included by the section of the
conoid (or spheroid) in the cutting plane τò πίπ δον τò π ριλαϕθ ν πò τ ς το  κωνο ιδέοςbody> (or σφαιρο ιδέος) τομ ς ν
τ  ποτέμνοντι. The vertex of a segment is the point at which the tangent plane parallel to the base of the segment meets the
surface, τò, σαμ ον κα   πτέται τò πίπ δον τò πιψα ον (το  κωνο ιδέος). The axis ( ξων) of a segment is differently
defined for the three surfaces ; (α) in the paraboloid it is the straight line cut off within the segment from the line drawn
through the vertex of the segment parallel to the axis of the conoid  ναπολαϕθ σα θ ω ν τ  τμάματι πò τ ς χθ ίσας
δι  τ ς κορυϕ ς το  τμάματος παρ  ξονα κωνο ιδέος,(b) in the hyperboloid it is the straight line cut off within the segment
from the line drawn through the vertex of the segment and the vertex of the cone enveloping the conoid πò χθ ίσας δι  τ ς
χθ ίσας δι  κορυϕ ς το  τμάματος το  κώνου τò π ριέχοντος τò κωνο ιδές, (c) in the spheroid it is the part similarly cut off

from the straight line joining the vertices of the two segments into which the base divides the spheroid, πò τ ς θ ίας τ ς τ
ς κορυϕ ς α τ ν(τ ν τμαμάτων) πιξ υγνυούσας.

Archimedes does not use the word centre with respect to the hyperboloid of revolution, but calls the centre the vertex of
the enveloping cone. Also the axis of a hyperboloid or a segment is only that part of it which is within the surface. The
distance between the vertex of the hyperboloid or segment and the vertex of the enveloping cone is the line adjacent to the
axis  ποτ ο σα τ  ξονι.

The following are miscellaneous expressions. The part intercepted within the conoid of the intersection of the planes  
ναπολαϕ σα ν τ  κωνο ιδ  τ  γ νομένας τομ ς τ ν πιπέδων, (the plane) will have cut the spheroid through its axis τ
τμακòς, σσ ίται τò σϕαιρο ιδ ς δι  το  ξονος, so that the section it makes will be a conic section στ  τ ν τομ ν ποιήσ ι
κώνον τομάν, let two segments be cut off in any manner ποτ τμάσθω δύο τμάματα ς τυχ ν or by planes drawn in any
manner πιπέδοις πωσο ν γμένοις.

Half the spheroid τò μίσ ον το  σφαιρο ιδέος, half the line joining the vertices of the segments (of a spheroid), i.e.
what we should call a semi-diameter,  μισέα α τ ς τ ς πιξ υγνιας τ ς κορυϕ ς τ ν τμαμάτων.

The spiral.
We have already had, in the conoids and spheroids, instances of the evolution of figures by the motion of curves about an

axis. The same sort of motion is used for the construction of solid figures inscribed in and circumscribed about a sphere, a
circle and an inscribed or circumscribed polygon being made to revolve about a diameter passing through an angular point of
the polygon and dividing it and the circle symmetrically. In this case, in Archimedes’ phrase, the angular points of the



polygon will move along the circumferences of circles , α  γωνίαι κατ  κύκλων π ιϕ ρ ι ν ν χθήονται (or ο σονται) and the
sides will move on certain cones, or on the surface of a cone κατά τινων κώνων ν χθήσονται or κα  πιϕαν ίας κώνον ; and
sometimes the angular points or the points of contact of the sides of a circumscribed polygon are said to describe circles
γράφουσι κύκλονς. The solid figure so formed is τò γ νηθ ν γ νηθ ν στ ρ òν σχ μα, and let the sphere by its revolution
make a figure π ρι ν χθ σα  σϕα ρα ποι ίτω σχ μά τι.

For the construction of the spiral, however, we have a new element introduced, that of time, and we have two different
uniform motions combined; if a straight line in a plane turn uniformly about one extremity which remains fixed, and return
to the position from which it started and if, at the same time as the line is revolving, a point move at a uniform rate along
the line starting from the fixed extremity, the point will describe a spiral in the plane ,  κα θ α… ν πιπέδ …μένοντος
το  τέρου πέρατος πέρατoς, α τ ς σοταχέως π ρι ν χ θ σα ποκατασταθ , πάλιν, θ ν ρμασ ν, μα δ  τ  γραμμ  π
ριαγομέν  ϕ ρήται τi σαμ ον σοταχέως α τò αυτ  κατ  τ ς θ ίας ρξάμ νον ω3ò το  μένοντος πέρατος, τò σαμ ον 
λικα γράΨ ι ν τ  πιπέδ .

The spiral (described) in the first, second, or any turn is  λιξ  ν τ , πρέτ  δ, υτέρ  or ποι ο ν π ριϕορ  γ
γραμμένα, and the turns other than any particular ones are the other spirals α  λλαι λικ ς.

The distance traversed by the point along the line in any time is  θ α  διανυσθ σα, and the times in which the point
moved over the distances , ο  χρòνοι, ν ο ς τò σαμ ον τ ς γραμμ ς πορ ύθη; in the time in which the revolving line
reaches ΑΓ from ΑΒ, νν  χρòν   π ριαγομένα γρμμ  πò ΑΒ π  ΑΓ ϕικν ίται.

The origin of the spiral is ρχ  τ ς λικς, the initial line ρχ  τ ς π ριϕορ ς. The distance described by the point along
the line in the first complete revolution is θ α πρέτα (first distance), that described during the second revolution the second
distance θ α δ υτέρα, and so on, the distances being called by the number of the revolutions μωνύμως τα ς π ριϕορα ς.
The first area, χωρίον πρ τον, is the area bounded by the spiral described in the first revolution and by the ‘first distance’
τò χωρίον τò π ριλαϕθ ν πò τ  τ ς λικος τ ς ν τ  πρώτ  π ριϕοο  γραφ ίσας κα  τ ς θ ίας,  στιν πρώτα ; the second
area is that bounded by the spiral in the second turn and the ‘second distance,’ and so on. The area added by the spiral in
any turn is τò χωρίον τò ποτιλαϕθ ν πò τ ς λικος ν τινι π ριϕορ .

The first circle, κύκλος πρ τος, is the circle described with the ‘first distance’ as radius and the origin as centre, the
second circle that with the origin as centre and twice the ‘first distance’ as radius, and so on.

Together with as many times the whole of the circumference of the circle as (is represented by) the nwmber less by one
than (that of) the revolutions μ  λας τ ς το  κύκλου π ριφ ρ ίας τοσαυτακις λαμβανομένας, σος στ ν  ν  λάσσων 
ριθμòς τ ν π ριϕορ ν, the circle called by the number corresponding to that of the revolutions  κύκλος  κατ  τòν ριθμòν
λ γόμ νος τα ς π ριϕορα ς.

With reference to any radius vector, the side which is in the direction of the revolution is forward τ  προαγούμ να, the
other backward τ  πòμ να.

Tangents, etc.
Though the word πττομαι is sometimes used in Archimedes of a line touching a curve, its general meaning is not to touch

but simply to meet; e.g. the axis of a conoid or spheroid meets ( πττ τ ι) the surface in the vertex. (The word is also often used
elsewhere than in Archimedes of points lying on a locus; e.g. in Pappus, p. 664, the point will lie on a straight line given in
position ψ ται τò οημ ον θέσ ι δ δομένης θ ίας.)

To touch a curve or surface is generally ϕάπτ σθαι or πιψαύ ιν (with gen.). A tangent is ϕαπτομένη or πιψαύουσα (sc.
θ α) and a tangent plane πιψα ον πίπ δον. Let tangents be drawn to the circle ΑΒΓ, το  ΑΒΓ κύκλου ϕαπτόμ ναι 

χθωσ2ν ; if straight lines be drawn touching the circles ν χθ σίν τιν ς πιψαύουσαι τ ν κύκλων. The full phrase of
touching without cutting is sometimes found in Archimedes; if a plane touch (any of) the conoidal figures without cutting
the conoid  κα τ ν κωνο ιδέων σχημάτων σχημάτων πίπ δν ϕαπτήται μ  τέμνον τò κωνο ιδές. The simple word ψαύ ιν is
occasionally used (participially), the tangent planes τ  πίπ δα τ  ψαύοντα.

To touch at a point is expressed by κατά (with acc.); the points at which the sides…touch (or meet) the circle σημ α, κα
 πτονται κύκλον α  πλ νραί…. Let them touch the circle at the middle points of the circumferences cut off by the sides of

the inscribed polygon πιψαυέτωσαν το  κύκλου κατ  μέσα τ ν ποτeνμνομένων πò γγ γ γραμμένου πολυγώνου πλ υρ ν.
The distinction between πιψαύ ιυ and πτομαι is well brought out in the following sentence; but that the plomes touching

ike spheroid meet its surface at one point only we shall prove  τι δ  τ  πιψαύοντα πίπ δα το  σφαιρο ιδέος κα  ν μόνον 
πτόνται σα1 ον τ ς αιϕαν ίαs α το  δ ιξο μ ς.

The point of contact  ϕή.
Tangents drawn from (a point) γμέναι πò ; we find also the elliptical expression πò το  Ξ ϕαπτέσθω  ΟΞΠ, let ΟΞΠ



be the tangent from Ξ, where, in the particular case, Ξ is on the circle.

Constructions.
The richness of the Greek language in expressions for constructions is forcibly illustrated by the variety of words which

may be used (with different shades of meaning) for drawing a line. Thus we have in the first place γω and the compounds
διάγω (of drawing a line through a figure, with ς or ν following, of producing a plane beyond a figure, or of drawing a line
in a plane), κατάγω (used of drawing an ordinate down from a point on a conic), προσάγω (of drawing a line to meet another).
As an alternative to προσάγω, προσβάλλω is also used; and προσπίπτω may take the place of the passive of either verb. To
produce is κβάλλω, and the same word is also used of a plane drawn through a point or through a straight line; an alternative
for the passive is supplied by κπίπτω. Moreover πρόσκ ιματ is an alternative word for being produced (literally being
added).

In the vast majority of cases constructions are expressed by the elegant use of the perfect imperative passive (with which
may be classed such forms as γ γονέτω from γίγνοματ, στω from μί, and κ ίσθω from κ ίμαι), or occasionally the aorist
imperative passive. The great variety of the forms used will be understood from the following specimens. Let ΒΓ be made (or
supposed) equal to Δ, κ ίσθω τ  Δ σον τò ΒΓ; let it be drawn χθω, let a straight line be drawn in it (a chord of a circle)
διήχθω τις ς θ α, let ΚΜ be drawn equal to… ση κατήχθω  ΚΜ, let it be joined π ξ ύχθω, let ΚΛ be drawn to meet
προσβφλήσθω  ΚΛ, let them be produced κβ βλήσθωσαν, suppose them found ρήσθωσαν, let a circle be set out κκ ίσθω
κύκλος, let it be taken λήϕθω, let Κ, Η be taken στωσαν λημμέναι α  Κ, Η, let a circle ψ be taken λ λάφθω κνκλος ν  τò
ψ, let it be cut τ τμήσθω, let it be divided διαιρήσθω (δυηρήσθω); let one cone be cut by a plane parallel to the base and
produce the section ΕΖ, τμηθήτω  τ ρος κ νος πιπέδ  παραλλήλ  τ  βάσ ι κα  ποι ίτω τομ ν τ ν ΕΖ, let ΤΖ be cut off 
πολ λάϕθω  ΤΖ; let uch an angle) be left and let it be ΝΗΓ, λ λ ίϕθω κα  στω  πò ΝΗΓ, let a figure be made γ γ νήσθω
σχ μα, let the sector he made στω γ γ νημένος  τομ ύς, let cones be described on the circles (as bases) νμγ γάϕθωσαν 
πò τ ν κνκλων κ νοι πò, το  κύκλου κ νοι, πò let it be inscribed or circumscribed γγ γράϕθω (or γγ γραμμένν στω), π
ριγ γράφθω ; let an area (equal to that) of ΑΒ be applied to ΓΗ, παραβ βλήσθω παρ  τ ν ΛΗ τò χωρίον το  ΑΒ; let a
segment of a circle be described on ΘΚ, π  τ ς ΘΚ κύκλον τμ μα ϕ στέσθω, let the circle be completed ναπ πληρώσθω 
κύκλος, let ΝΞ (a parallelogram) be completed σνμπ πληρωσθω τò ΝΗ, let it be made π ποιησθω, let the rest of the
construction be the same as before τ  λλα κατ σκ νάσθω τòν τρόπον το ς πρότ ρον. Suppose it done γ γονέτω.

Another method is to use the passive imperative of νοέω (let it be conceived). Let straight lines be conceived to be drawn
νο ίσθωσαν θ αι γμέναι, let the sphere be conceived to be cut νο ίσθω  σϕα ρα τ τμημένη, ilet a figure (generated)
from the inscribed polygon be conceived as inscribed in the sphere  πò το  πολυγώνου το  γγραφομένον νο ίσθω τι ς τ ν
σϕα ραν γγραϕ ν σχ μα. Sometimes the participle for drawn is left out; thus  α το  νο ίσθω πιϕέν ια let a surface be
conceived (generated) from it.

The active is much more rarely used; but we find (1) ν with subjunctive, if we cut ν τέμωμ ν, if we draw ν γάγωμ
ν, if you produce ν κβαλ ς ; (2) the participle, it is possible to inscribe…and (ultimately) to leave δννατόν στιν 
γγάϕοντα…λ ίπ ιν, if we continually circumscribe polygons, bisecting the remaining circumferences and drawing tangents,
we shall (ultimately) leave  δ  π ριγράφοντ ς πολύγωνα δίχα τ μνομ νων τ ν π ριλ ιπομένων π ριφ ρ ιών κα  γομένων 
ϕαπτομένων λ ιψομ ν, it is possible, if we take the area…, to inscribe λαβόντα (or λαμβάνοντα) τò χωρίον…δννατόν 
στξν… γγράψαι; (3) the first person singular, I take two straight lines λαμβάνω δυο θ ίας, I took a straight line λαβόν τινα

θ αν; I draw ΘΜ from Θ parallel to ΑΖ, γω πω το  Θ τ ν ΘΜ παράλληλον τ  ΑΖ, having drawn ΓΚ perpendicular, I
cut off ΑΚ equal to ΓΚ γαγων κάθ τον τ ν ΓΚ τ  ΓΚ σσν πέλαβον τ ν ΑΚ, I inscribed a solid figure…and
circumscribed another νέγραψα σχ μα στ ρ òα…κα  λλο π ριέγραψα.

The genitive of the passive participle is used absolutely, ρ θέντος it being supposed found, γγραϕέντος δή (the figure)
being inscribed.

To make a figure similar to one  (and equal to another) μοιώσαι, to find experimentally ργμνικ ς, to cut into unequal
parts ς νισα τέα τέμν ιν.

Operations (addition, subtraction, etc.).

1. Addition, and sums, of magnitudes.
To add is προστίθημι, for the passive of which πρόσ κ ίμαι is often used; thus one segment being added νòς τμάματος

ποτιτ θέντος, the added (straight line)  ποτικ ιμένα, let the common ΗΑ, ΖΓ be added κοιν  ττροσκ ίσθωσαν α  ΗΑ, ΖΓ ;
the words are generally followed by πρός (with acc. of the thing added to), but sometimes by the dative, that to which the
addition was made  ποτέθη.



For being added together we have σνντίθ^σθαι thus being added to itself σνντιθέμζνον α τò, added together ς ω τò
συντ θέντα, added to itself (continually) πιοσυτιθέμ νν μυτ .

Sums are commonly expressed for two magnitudes by σνναμφότ ρος used in the following different ways; the sum of ΒΑ,
ΑΛ σνναμφότ ρος  ΒΑΛ, the sum of ΔΓ, ΓΒ σνναμφότ ρος  ΔΓ, ΓΒ, the sum of the area and the circle  τò σνναμφότ ρον 
τ  κύ;κλος κα  τò χωρίον. Again for sums in general we have such expressions as the line which is equal to both the radii  
οη μϕοτέραις τα ς κ το  κέντρου, the line equal to (the sum of) all the lines joining  ση πάσαις τα ς πιξ υγνυούσαις.
Also all the circles ο  πάντζς κύκλοι means the sum of all the circles; and σνγκζιται κ is used for is equal to the sum of (two
other magnitudes).

To denote plus μ τά (with gen.) and σύν are used; together with the bases μ τ  τ ν βάσ ων, together with half the base of
the segment σ ν τ  μισ έ  τμήματος βάσ ως; τ  and καί also express the same thing, and the participle of προσλαμβάνω
gives another way of describing having something added to it; thus the squares on (all) the lines equal to the greatest together
with the square on the greatest… is τ  τ τράγωνα τ  πò τ ν σ ν τ  μ γί ποτιλαμβάνοντα τò τ  πò μ γίστας τ τράγωνον ….

2. Subtraction and differences.
To subtract from is ϕαιρ ν πò ; if (the rhombus) be conceived as taken away ν νοηθ  ϕ ρημένος, let the segments

be subtracted ϕαιρ θέντων τμήματα. Terms common to each side in an equation are κοινά; the squares are common to both
(sides) κοινά ντι κατέρων τ  τ τράγωνα. Then let the common area be subtracted is κοινòν ϕ ρήσθω τò χωρίον, and so
on; the remainder is denoted by the adjective λοιπός, e.g. the conical surface remaining λοιπ   κωνικ  πιϕάν ια.

The difference or excess is π ροχή, or more fully the excess by which (one magnitude) exceeds (another) π ροχή,  π
ρέχ ι… or π ροχά,  μ ίξων οτί…. The excess is also expressed by means of the verb α ρέχ ιν alone; let the difference by
which the said triangles exceed the triangle ΑΔΓ be Θ,  δ  π ρέχ ι τ  ρημένα τρίγωνα το  ΑΔΓ τρίγωνου στω τò Θ, to
exceed by less than the excess of the cone ψ over the half of the spheroid π ρέχ ξν λòσσονι   (or λίκ ) π ρέ ι  ψ κ
νος το  ήμέσ ος το  σφαιρο ιδέος (where  π ρέχ ι may also be omitted). Again the excess may be  μ έξων στí. The
opposite to π ρέχ ι is λ ίπ ται (with gen.).

Equal to twice a certain excess σα δυσ ν π ροχα ς, with which equal to one excess, σα µι  π ροχ , is contrasted.
The following sentence practically states the equivalent of an algebraical equation; the rectangle under ΖΗ, ΞΔ exceeds

the rectangle under ΖΕ, ΕΔ by the (sum of) the rectangle contained by ΞΔ, ΕΗ and the rectangle under ΖΕ, ΞΕ, π ρέχ ι τò 
πò τ ν ΖΗ, ΞΔ το  πò τ ν ΖΕ, ΕΔ τ  τ  πò τ ν ΞΔ, ΕΗ π ρι χομέν  κα  τ  πò ΖΕ, ΞΕ. Similarly twice ΡΗ together with

ΠΣ is (equal to) the sum of ΣΡ, ΡΠ, δύο μ ν α  ΡΗ μ τ  ΠΣ συναμφότ ρός στιν  ΣΡΠ.

3. Multiplication.
To multiply is πολλαπλασιάζω); multiply one another (of numbers) πολλαπλασιάζ ιν λλάλους ; to multiply by a number

is expressed by the dative; let Δ be multiplied by Θ π πολλαπλασιάσθω  Δ τ  Θ.
Multiplied into is sometimes πί (with acc.); thus the rectangle ΗΘ, ΘΑ into ΘΑ (i.e. a solid figure) is τò πò τ ν ΗΘ,

ΘΑ π  τ ν ΘΑ.

4. Division.
To divide διαιρ ν ; let it be divided into three equal parts at the points Κ, Θ, διηρήσθω ς τρία σα τ  Κ, Θ σαμ α ; to

be divisible by μ τρ σθαι πò.

Proportions.
A ratio is λόγος, proportional is expressed by the phrase in proportion νάλογον, and a proportion is ναλογία. We find

in Archimedes some uses of the verb λέγω which seem to throw light on the definition found in Euclid of the relation or ratio
between two magnitudes. One passage (On Conoids and Spheroids, Prop. 1) says if the terms similarly placed have, two and
two, the same ratio and the first magnitudes are taken in relation to some other magnitudes in any ratios whatever  κα κατ
δύο τòν α τòν λόγον χωντι τ  μοίως τ ταγμένα, λ γήται δέ τ  πρ τα μ γέθ α ποτι τινα λλα μ γέθ α… ν λόγοις ποιοισο
ν, if Α, Β… be in relation to Ν, Ξ… but Ζ be not in relation to anything (i.e. has no term corresponding to it)  κα… τ  μ ν
Α, Β, … λ γώνται ποτ  τ  Ν, Ξ, … τò δ  Ζ μηδ  πο  ν λ γήται.

A mean proportional between is μέση νάλογον…, is a mean proportional between μέσον λόγον λòγον χ ι τ ς…κα  τ
ς…, two mean proportionals δυο μέσαι νάλογον with or without κατ  τò συν χ ς in continued proportion.

If three straight lines be proportional  ν τρ ς θ αι νάλογον σι, a fourth proportional τ τάρτα νάλογον, if four



straight lines be proportional in continued proportion  κα τέσσάρ ς γραμμα  νάλογον ωντι ν τ  συν χ  ναλογί , at the
point dividing (the line) in the said proportion κατ  τ ν νάλογον τομ ν τ  ρϕμέν .

The ratio of one straight line to another is e.g.  τ ς ΡΑ πρòς ΛΧ λόγος or  (λόγος), ν χ ι ή ΡΛ πρòς τ ν ΛΧ; the ratio
of the bases  τ ν βασίων λογος; has the ratio of 5 to 2 λόγον χ ι, ν πέντ  πρòς δύο.

For having the same ratio as we find the following constructions. Have the same ratio to one another as the bases τòν α
τòν χοντι λόγον ποτ’ λλάλους τα ς βάσ σιν, as the squares on the radii ν α  κ τ ν κέντρων δννάμ ι; ΤΔ has to ΡΖ the
(linear) ratio which the square on ΤΔ has to the square on Η, ν χ ι λόγον  ΤΔ πρòς τ ν Η δννάμ ι, το τον χ ι τòν λόγον 
 ΤΔ πρòς ΡΖ μήκ ι. Is divided in the same ratio ς τòν α τòν λόγον τέτμηται, or simply μοίως ; will divide the diameter in

the proportion of the successive odd numbers, unity corresponding to the (part) adjacent to the vertex of the segment τ ν διάμ
τρον τ μο ντι ς το ς τ ν ξ ς π ρισσ ν ριθμ ν λόγους, νòς λ γομένου ποτ  τ  κορυϕ  το  τμάματος.

To have a less (or greater) ratio than is χ ιν λόγον λάσσονα (or μ ίζονα) with the genitive of the second ratio or a
phrase introduced by ; to have a less ratio than the greater magnitude has to the less, χ ιν λόγον λάσσονα  τò μ ξον
μέγ θος ποòς τò λασσον.

For duplicate, triplicate etc. ratios we have the following expressions: has the triplicate ratio of the same ratio
τριπλασίονα λόγον χ ι το  α το  λόγου, has the duplicate ratio of ΕΛ to ΑΚ διπλασιονα λόγον χ ι π ρ  ΕΛ ποòς ΑΚ, are
in the triplicate ratio of the diameters in the bases ν τριπλασίονι λòγ  σ  τ ν ν τα ς βάσ σι διαμέτρων, sesquialterate
ratio μιόλιος; λόγος. With these expressions must be contrasted the use of double, quadruple etc. ratio in the sense of a
simple multiple by 2, 4 etc., e.g. if any number of areas be placed in order, each being four times the next  κα χωρία τ θ
ωντι ξ ς ποσαο ν ν τ  τ τραπλασίονι λόγ .

The ordinary expression for a proportion is as Α is to Β so is Γ to Δ, ς  Α πρòς τήν B, ο τως  Β, πρòς τ ν Γ ποòς τ ν
Δ. Let ΔΕ be made so that ΔΕ is to ΓΕ as the sum of ΘΑ, ΑΕ is to ΑΕ, π ποιήσθω, ς συναμφότ ρός  ΘΑ, ΑΕ ποòς τ ς
ΑΕ, ο τως  ΔΕ ποòς ΓΕ. The antecedents are τ  γούμ να, the consequents τ  πόμ να.

For reciprocally proportional the parts of ντιπέπονθα are used ; the bases are reciprocally proportional to the heights 
ντιπ πόνθασιν α  βάσ ις τα ς ψ σιν, to be reciprocally in the same proportion ντιπονθέμeν κατ  τòν α τòν λόγον.

A ratio compounded of is λόγος συνημμένος (or συγκ ίμ νος) κ τ  το …κα  το … ; the ratio of ΡΛ to Λχ is equal to
that compounded of  τ ς ΡΛ ΛΧ λόγος συν πται κ… Two other expressions for compounded ratios are  το  πò ΑΘ πρòς
τò 3ò ΒΘ κα   (or προσλαβών τòν) τ ς ΑΘ πρòς ΘΒ, the ratio of the square on ΑΘ to the square on ΒΘ multiplied by the
ratio of ΑΘ to ΘΒ.

The technical terms for transforming such a proportion as a : b = c : d are as follows :
1. ναλλάξ alternately (usually called permutando or alternando) means transforming the proportion into a : c = b : d.
2. νάπαλιν reversely (usually invertendo), b : a = d : c.
3.σύνθ σις λόγου is composition of a ratio by which the ratio a : b becomes a + b : b. The corresponding Greek term to

componendo is συνθέντι, which means no doubt literally “to one who has compounded,” i.e. “if we compound,” the ratios.
Thus συνθέντι denotes the inference that a + b : b = c + d : d. κατ  σύνθ σιν is also used in the same sense by Archimedes.

4.διαίρ σις λόγον signifies the division of a ratio in the sense of separation or subtraction by which a : b becomes a − b : b.
Similarly δι λόντι (or κατ  διαίρ σιν) denotes the inference that a−b : b = c − d : d. The translation dividendo is therefore
somewhat misleading.

5.λόγου conversion of a ratio and ναστρξαντι correspond respectively to the ratio a : a − b and to the inference that a : a − b
= c : c − d.

6. δ  σου ex aequali (sc. distantia) is applied e.g. to the inference from the proportions

a : b : c: d: etc. = A : B : C: D etc.

that a : d= A : D.
When this dividing-out of ratios takes place between proportions with corresponding terms placed crosswise, it is

described as δ  σου ν τ  τ ταραγμένη, ex aequali in disturbed proportion or νομοίως τ ν λόγων τ ταγμένων the ratios
being dissimilarly placed; this is the case e.g. when we have two proportions

a : d= B : C,



b : c= A : B,

and we infer that a : c= A : C,

Arithmetical terms.

Whole multiples of any magnitude are generally described as the double of, the triple of etc.,  διπλάσιος,  τριπλάσιος
κ.τ.λ., following the gender of the particular magnitude; thus the (surface which is) four times the greatest circle in the
sphere  τ τραπλασία το  μ γίστον κυκλον τ ν τ  σϕαίρ  ; five times the sum of ΑΒ, ΒΕ together with ten times the sum of
ΛΒ, ΒΔ,  π νταπλασία σνναμφοτέρον τ ς ΑΒ, ΒΕ μ τ  τ ς δ καπλασίας συναμφοτέρον τ ς ΓΒ, ΒΔ. The same multiple as
τοσανταπλασίων… σαπλασίων στ , or σάκις πολλαπλασίων… καί. The general word for a multiple of is πολλαπλάσιος or
πολλαπλασίων, which may be qualified by any expression denoting the number of times multiplied; thus multiplied by the
same number πολλαπλάσιος τ  α τ  ριθμ , multiples according to the successive numbers πολλαπλάσια κατ  το ς ξ ς 
ριθ1ούς.

Another method is to use the adverbial forms twice δίς, thrice τρίς, etc., which are either followed by the nominative, e.g.
twice ΕΔ δις  ΕΔ, or constructed with a participle, e.g. twice taken δ ς λαμβανόμ νος or δ ς ρημένος ; together with twice
the whole circumference of the circle μ θ’ λας τ ς το  κύκλον π ριφ ρ ίας δ ς λαμβανομένας. Similarly the same number of
times (the said circumference ) as is expressed by the number one less than (that of) the revolutions  τοσαντάκις λαμβανομ
νας, σος στ ν  ν  λάσσwν ριθμòς τ ν πeριϕορ ν An interesting phrase is the following, as many times as the line ΓΔ is
contained (literally added together) in γΔ, so many times let the time ΖΔ be contained in the time ΛΗ, σάκις σνγκ ίται 
ΓΔ γρ2μμ  ν τ  ΑΔ, τοσαυτάκις συγκ ίσθω  χρόνος  ΖΗ ν τ  χρόν  τ  ΛΗ.

Submultiples are denoted by the ordinal number followed by μέρος; one-seventh is βδομον μέρος and so on, one-half
bging however μιους. When the denominator is a large number, a circumlocutory phrase is used; thus less than th part
of a right angle λάττων  διαιρ θ ίσας τ ς ρθ ς ς ρξδ τούτων ν μέρος.

When the numerator of a fraction is not unity, it is expressed by the ordinal number, and the denominator by a compound
substantive denoting such and such a submultiple; e.g. two-thirds δύο τριταμόρια, three-fifths τρία π μπταμόρια.

There are two improper fractions which have special names, thus one-and-a-half of is μιόλιος, one-and-a-third of 
πίτριτος. Where a number is partly integral and partly fractional, the integer is first stated and the fraction follows introduced
by κα  τι or καί and besides. The phrases used to express the fact that the circumference of a circle is less than  3  but
greater than 3  times its diameter deserve special notice; (1) παντòς κύκλου  π ρίμ τρος τ ς διαμέτρου τριπλασίων στί,
κα  τι π ρέχ ι λάσσονι μ ν  βδόμ  μέρ ι διαμέτρου, μ ίζονι τ ς διαμέτρου, μ ίξονι δ   δέκα βδομηκοστομόνοις and (2)
τριπλασίων στ  κα  λάσσονι μ ν  βδόμ  μέρ ι, μ ίζων δ   ί ο  μ ίξων. We also have the phrase for the first part λάσσων 
 τριπλασίων κα  βδόμ  μέρ ι μ ίζων.

To measure μ τρ ν, common measure κοινòν μέτρον, commensurable, incommensurable σύμμ τρος, σύμμ τρος.

Mechanical terms.
Mechanics τ  μηχανικά, weight βάρος; centre of gravity κέντρον το  βάρ ος with another genitive of the body or

magnitude; in the plural we have either τ  κέντρα α τ ν το  βάρ ος or τ  κέντρα τ ν βαρέων. κέντρον is also used alone.
A lever ζυγός or ζύγιον, the horizon δ δρίζων; in a vertical line is represented by perpendicularly κατ  κάθ τον, thus the

point of suspension and the centre of gravity of the body suspended are in a vertical line  κατ  κάθ τόν στι τó τ  στι τό κέ
σαμ ον το  κρ μαστο  κα  τò κέντρον το  βάρ ος το  κρ μαμένου. Of suspension from or at κ or κατά (with acc.) is used. Let
the triangle be suspended from the points Β, Γ, κρ μάσθω τò τρίγw νον κ τ ν Β, Γ σαμ ίων; if the suspemion of the
triangle ΒΔΓ at Β, Γ be set free, and it be suspended at E, the triangle remains in its position  κα τo  ΒΔΓ τριγώνου  μέν
κατά τά Β, Γ κρέμασις λυθ , κατά δέ τò E κρ µασθ , μέν ι τò τρíγωνον, ώς νûν χ ι.

To incline towards έπ ιν έπí (acc.); to be in equilibrium ìσορροπ îν, they will be in equilibrium with Δ held fast κατ
χομένου τοû Δ ìσορροπήσ ι, they will be in equilibrium at Δ (i.e. will balance about Δ) κατà τò Δ ìορροπησοûντι ; ΑΒ is too
great to balance Γ µ îξóν έστι τò AB ή ώστ  ìσορροπ îν τ  Γ. The adjective for in equilibrium is ìσορρ πής; let it be in
equilibrium with the triangle ΓΔΗ, ìσορρ πές στώ τ  ΓΔΗ τριγών . To balance at certain distances (from the point of
support or the centre of gravity of a system) is àπó τινών µακέών ìσορροπ îν.

Theorems, problems, etc.



A theorem θ ώρημα (from θ ώρ îν to investigate) ; a problem πρόβλημα, with which the following expressions may be
compared, the (questions) propounded concerning the figures τά προβ βλημένα π ρì τ ν σχημάτων, these things are
propounded for investigation προβαλλέται τάδ  θ ωρήσαι; also πρόκ ιμαι takes the place of the passive, which it was
proposed (or required) to find őπ ρ προ κέιτο úρ îν.

Another similar word is direction or requirement; thus the theorems and directions necessary for the proofs of them τά θ
ωρήματα καì τά έπιτάγµατα τά χρ ίαν χοντα ìς τάς άπο ιδξìας αúτ ν, in order that the requirement may be fulfilled πώς

γένηται τò έπιταχθέν (or έπìταγµα). To satisfy the requirement  is ποι îν τò έπìταγµα (either e.g. of lines in a figure, or of the
person solving the problem).

After the setting out ( κθ σις) in any proposition there follows the short statement of what it is required to prove or to do.
In the former case (that of a theorem) Archimedes uses one of three expressions δ ικτέον it is required to prove , λέγω or ϕαµì
δή I assert or say ; and in the second case (that of a problem) δ î δή it is required (to do so and so).

In a problem the analysis άνάλυσις and synthesis σύνθ σις are distinguished, the latter being generally introduced with the
words the synthesis of the problem will be as follows συντ θήσ ται τò πρόβλημα ο τώς. The parts of the verb άναλú ιν are
similarly used ; thus the analysis and synthesis of each of these (problems) will be given at the end έκάτ ρα δέ ταûτα τπì
άναλυθήσ ταì τ  καí συντ θήσ ται.

A notable tem in connexion with problems is the διορισμός (determination), which means the determination of the limits
within which a solution is possible*. If a solution is always possible, the problem does not involve a ιορισμός, οù κ χ ι
διορισμόν; otherwise it does involve it, χ ι διορισμόν.

Data and hypotheses.

For given some part of the verb δίδωμι is used, generally the participle δοθΐς, but sometimes δ δομένος and once or twice
διδόμ νος. Let a circle be given δ δόσθω κύκλος, given two unequal magnitudes δυο µ γ θ ν άνìσών δοθέντων, each of the
two lines ΓΔ, ΕΖ is given έστìν δοθ îσα έκατέρα τ ν ΓΔ, ΕΖ the same ratio as the given one λόγος ó αυτός τ  δοθέντι.
Similar expressions are the assigned ratio ó ταχθ ìς λόγος, the given area τò προτ θέν (or προκ ίμ νον) χωρίον.

Given in position θέσ ι simply (sc. δ δομένη).
Of hypotheses the parts of the verb úποτìθ µαι and (for the passive) úπóκ ιµαι are used; with the same suppositions τ ν

αùτ ν úποκ ιµένών, let the said suppositions be made úποκ ìσθώ τά ìρηµένα, we make these suppositions úποτιθέµ θα τάδ
.

Where in a reductio ad absurdum  the original hypothesis is referred to, and generally where an earlier step is quoted, the
past tense of the verb is used; but it was not (so) οùκ ήν δέ, for it was less ήν γάρ έλάσσών, they were proved equal άπ δ
ìχθησαν ìσοι, for this has been proved to be possible δ δ ίκται γάρ τοûτο δυνατòν έóν. Where a hypothesis is thus quoted, the
past tense of úπóκ ιµαι has various constructions after it, (1) an adjective or participle, ΑΖ, ΒΗ were supposed equal σαι
úπέκ ιντο αì ΑΖ, ΒΗ, it is by hypothesis a tangent úπέκ ιτο έπιψαúìυσα, (2) an infinitive, for by hypothesis it does not cut
úπέκ ιτο γάρ µή τέμν ιν, the axis is by hypothesis not at right angles to the parallel planes úπέκ ιτο ó ξών µή ìµ ν òρθòς
ποτì τά παράλλαλα έπìπ δα, (3) the plane is supposed to have been drawn through the centre τò έπìπ δον úπóκ ιπαι δαά τοû
κέντρον χθαι.

Supposing it found úρ θ-έντος absolutely. Suppose it done γ γονέτω.
The usual idiomatic use of ì δέ µή after a negative statement may be mentioned; it will not meet the surface in another

point, otherwise… οù γάρ άψέται κατ’ λλο σαµ îον τâς έπιϕαν ìας ì δέ µή….

Inferences, and adaptation to different cases.

The usual equivalent for therefore is ρα; οúν and τοίνυν are generally used in a somewhat weaker sense to mark the
startingpoint of an argument, thus έπ ì οúν may be translated as since, then. Since is έπ ì, because διότι.

πολλ  µâλλον much more then is apparently not used in Archimedes, who has πολλ  alone; thus much less then is the
ratio of the circumscribed figure to the inscribed than that of  Κ to Η πολλ  ρα τò π ριγρραϕέν πρòς τò έγγραϕέν έγάσσονα
λóγον χ ι τοû, ν χ ι ή Κ πρòς Η.

διά with the accusative is a common way of expressing the reason why; because the cone is isosceles διά τò ìσοσκλή ìναι
κ νον, for the same reason διά ταùτά.



διά with the genitive expresses the means by which a proposition is proved; by means of the construction διά τ ς κατασκ
υ ς, by the same means διά τ ν αùτ ν, by the same method διά τοû αùτο  τρόπον.

Whenever this is the case, the surface is greater ταν τοûτο , μ ίζων γίν ται ή έπιϕάν ια…, if this is the case, the angle
ΒΑΘ is equal…, ì δέ τοûτο, σα έστìν ά úπò ΒΑΘ γωνία…, which is the same thing as showing that…  ταùτóν έστι τ  δ
îξαι, τι….

Similarly for the sector óµοíως δέ καì έπì τοû τομέως, the proof is the same as (that used to show) that ά αùτά άπóδ ιξις
π ρ καì τι, the proof that… is the same ά αùτά άπóδ ιξις έντι καì διότι…, the same argument holds for all rectilineal

figures inscribed in the segments in the recognised manner  (see p. 204) έπì πάντων ùθυγράµµων τ ν έγγραϕοµένωα ές τά
τμάματα γνωρίμως ó αùτòς λόγος; it will be possible, having proved it for a circle, to transfer the same argument in the
case of the sector σται έπì κύκλον δ ίζαντα µ ταγαγ îν τòν µοιον λόγον καì έπì τοû τομέως; the rest will be the same, but
it will be the lesser of the diameters which will be intercepted within the spheroid (instead of the greater) τά µέν λλα τά
αùτά έσσ íται, τâν δέ διαμέτρων ά έλάσσωα έσσ íται ά έναπολαϕθ îσα έν τ  σϕαιρο ιδ î; it will make no difference
whether…or…διοίσ ι δέ οùδέν, τ … τ ….

Conclusions.

The proposition is therefore obvious, or is proved δ λον οùν έστι (or δέδ ικται) τò προτ θέν; similarly ϕαν ρòν οùν έστιν,
 δ ι δ íξαι, and δ ι δέ υοûτο δ ίξαι. Which is absurd, or impossible π ρ τοπον or άδúνατον.

A curious use of two negatives is contained in the following: οùκ ρα ο κ έστι κέντρον τοû βάρέος τοû ΔΕΖ τριγόνον τò Ν
σαµ îον. στιν ρα, therefore it is not possible that the point  Ν should not be the centre of gravity of the triangle ΔΕΖ. It
must therefore be so.

Thus a rhombus will have been formed σται δή γ γονώς óµβος; two unequal straight lines have been found satisfying the
requirement úρηµέναι ìσìν ρα δúο ùθ îαι νισοι ποιοûσαι τò έπíταγµα.

Direction, concavity, convexity.

In the same direction έπì πά αùά, in the other direction έπì τά τ ρα, concave in the same direction έπì τά αùτά κοίλη;
in the same direction as έπì τά αùτά with the dative or έϕ’ , thus in the same direction as the vertex of the cone έπì τά αùτά
τ  τοû κώνον κορυϕ , drawn in the same direction as (that of) the convex side of it έπì πά αùτά γοµέναι, έϕ’  έντι τά κυρτά
αùτοû. For on the same side of έπì τά αùτά is followed by the genitive, they fall on the same side of the line έπì τά αùτά
πίπτονσι τ ς γραµµ ς.

On each side of έϕ’ έκάτ ρα (with gen.); on each side of the plane of the base έϕ’ έκάτ ρα τοû έπιπέδου τ ς βάσ ως.

Miscellaneous.

Property σύμπτωμα. Proceeding thus continually , ά ì τοûτο ποιοûντ ς, ά ì τούτον γ ν ομένου, or τούτον έξ ς γινομένον.
In the elements έν τ  στοιχ ιώσ ι.

One special difference between our terminology and the Greek is that whereas we speak of any circle, any straight line
andi the like, the Greeks say every circle, every straight line, etc. Thus any pyramid is one third part of the prism with the
same base cbs the pyramid and equal height πâσα πυραµìς τρίτον μέρος έστì τοû πρίσματος τοû τάν αùτάν βάσιν χοντος τ
πνραμίδι καì ψος σον. I define the diameter of any segment as διάμ τρον καλέω παντός τμάματος. To exceed any assigned
(magnitude) of those which are comparable with one another úπ ρέχ ιν παντòς τοû προτ θέντος τ ν πρòς λληλα λ γομένων.

Another noteworthy difference is illustrated in the last sentence. The Greeks did not speak as we do of a given area, a
given ratio etc., but of the given area, the given ratio, and the like. Thus It is possible…to leave certain segments less than a
given area δννατόν έστιν…λ ίπ ιν τινα τμήματα, π ρ σται έλάσσονα τοû προκ ιμένον χωρίον; to divide a given sphere by a
plane so that the segments have to one another an assigned ratio τάν δοθ îσαν σϕαîραν έπιπέδω τ µ îν, στ  τά τµάµατα αùτâς
ποτ’ λλαλα τòν τμάματα λóγον χ ιν.

Magnitudes in arithmetical progression  are said to exceed each other by an equal (amount); if there be any number of
magnitudes in arithmetical progression  κα ωντι µ γέθ α óποσαοûν τ  σ  άλλάλων úπ ρέχοντα. The common difference
is the excess úπ ροχά, and the terms collectively are spoken of as the magnitudes exceeding by the equal (difference) τά τ  
σ  úπ ρέχοντα. The least term is τò έλάχιστον, the greatest term τò μέγιστον. The sum of the terms is expressed by πάντα τά

τ  σ  úπ ρέχοντα.



Terms of a geometrical progression  are simply in (continued) proportion άνάλογον, the series is then ή άναλογíα, the
proportion, and a term of the series is τìς τ ν έν τ  αùτ  άναλογíα. Numbers in geometrical progression beginning from
unity are άριθµοì άνάλογον άπò µονάδος. Let the term Δ of the progression be taken which is distant the same number of
terms from Θ as Δ is distant from unity λ λάφθω έκ τâς άναλογíας ó Δ άπέχων άπò τοû Θ τοσούτους, σους ó Δ άπò µονάδος
άπέχ ι.

* Apollonius of Perga, pp. clvii—clxx.
*Cf Apollonius of Perga, pp. xxiv, xxv.
* Cf. Apollonius of Perga, p. lxx, note.



ON THE SPHERE AND CYLINDEB.

BOOK I.

“ARCHIMEDES to Dositheus greeting.

On a former occasion I sent you the investigations which I had up to that time completed, including the proofs, showing that
any segment bounded by a straight line and a section of a right-angled cone [a parabola] is four-thirds of the triangle which has
the same base with the segment and equal height. Since then certain theorems not hitherto demonstrated (άυελ γκτων) have
occurred to me, and I have worked out the proofs of them. They are these: first, that the surface of any sphere is four times its
greatest circle (τo  μεγίστου κύκλου); next, that the surface of any segment of a sphere is equal to a circle whose radius (ή κ
τo  κ ντρου) is equal to the straight line drawn from the vertex (κορυϕή) of the segment to the circumference of the circle
which is the base of the segment; and, further, that any cylinder having its base equal to the greatest circle of those in the
sphere, and height equal to the diameter of the sphere, is itself [i.e. in content] half as large again as the sphere, and its surface
also [including its bases] is half as large again as the surface of the sphere. Now these properties were all along naturally
inherent in the figures referred to (αύτ  τ  ϕύσει πουπ ρχεν περì τά εìρημ υα σχήματα), but remained unknown to those who
were before my time engaged in the study of geometry. Having, however, now discovered that the properties are true of these
figures, I cannot feel any hesitation in setting them side by side both with my former investigations and with those of the
theorems of Eudoxus on solids which are held to be most irrefragably established, namely, that any pyramid is one third part of
the prism which has the same base with the pyramid and equal height, and that any cone is one third part of the cylinder which
has the same base with the cone and equal height. For, though these properties also were naturally inherent in the figures all
along, yet they were in fact unknown to all the many able geometers who lived before Eudoxus, and had not been observed by
any one. Now, however, it will be open to those who possess the requisite ability to examine these discoveries of mine. They
ought to have been published while Conon was still alive, for I should conceive that he would best have been able to grasp
them and to pronounce upon them the appropriate verdict; but, as I judge it well to communicate them to those who are
conversant with mathematics, I send them to you with the proofs written out, which it will be open to mathematicians to
examine. Farewell.

I first set out the axioms* and the assumptions which I have used for the proofs of my propositions.

DEFINITIONS.
1. There are in a plane certain terminated bent lines (καμπύλαι γραμμαί πεπερασμ ναι)†, which either lie wholly on the

same side of the straight lines joining their extremities, or have no part of them on the other side.
2. I apply the term concave in the same direction to a line such that, if any two points on it are taken, either all the

straight lines connecting the points fall on the same side of the line, or some fall on one and the same side while others fall on
the line itself, but none on the other side.

3. Similarly also there are certain terminated surfaces, not themselves being in a plane but having their extremities in a
plane, and such that they will either be wholly on the same side of the plane containing their extremities, or have no part of
them on the other side.

4. I apply the term concave in the same direction to surfaces such that, if any two points on them are taken, the straight
lines connecting the points either all fall on the same side of the surface, or some fall on one and the same side of it while some
fall upon it, but none on the other side.

5. I use the term solid sector, when a cone cuts a sphere, and has its apex at the centre of the sphere, to denote the figure
comprehended by the surface of the cone and the surface of the sphere included within the cone.

6. I apply the term solid rhombus, when two cones with the same base have their apices on opposite sides of the plane of
the base in such a position that their axes lie in a straight line, to denote the solid figure made up of both the cones.

ASSUMPTIONS.
1. Of all lines which have the same extremities the straight line is the least*.
2. Of other lines in a plane and having the same extremities, [any two] such are unequal whenever both are concave in

the same direction and one of them is either wholly included between the other and the straight line which has the same
extremities with it, or is partly included by, and is partly common with, the other; and that [line] which is included is the lesser
[of the two].



3. Similarly, of surfaces which have the same extremities, if those extremities are in a plane, the plane is the least [in
area].

4. Of other surfaces with the same extremities, the extremities being in a plane, [any two] such are unequal whenever
both are concave in the same direction and one surface is either wholly included between the other and the plane which has the
same extremities with it, or is partly included by, and partly common with, the other; and that [surface] which is included is the
lesser [of the two in area].

5. Further, of unequal lines, unequal surfaces, and unequal solids, the greater exceeds the less by such a magnitude as,
when added to itself, can be made to exceed any assigned magnitude among those which are comparable with [it and with] one
another*.

These things being premised, if a polygon be inscribed in a circle, it is plain that the perimeter of the inscribed polygon
is less than the circumference of the circle ; for each of the sides of the polygon is less than that part of the circumference of
the circle which is cut off by it.”

Proposition 1.

If a polygon be circumscribed about a circle, the perimeter of the circumscribed polygon is greater than the perimeter
of the circle.

Let any two adjacent sides, meeting in A, touch the circle at P, Q respectively.

Then [Assumptions, 2]
PA + AQ > (arc PQ).

A similar inequality holds for each angle of the polygon; and, by addition, the required result follows.

Proposition 2.

Given two unequal magnitudes, it is possible to find two unequal straight lines such that the greater straight line has to
the less a ratio less than the greater magnitude has to the less.

Let AB, D represent the two unequal magnitudes, AB being the greater.

Suppose BC measured along BA equal to D, and let GH be any straight line.

Then, if CA be added to itself a sufficient number of times, the sum will exceed D. Let AF be this sum, and take E on GH
produced such that GH is the same multiple of HE that AF is of AC.



Thus EH : HG = AC : AF
But, since AF > D (or CB),

AC : AF < AC : CB.

Therefore, componendo,
EG : GH < AB : D.

Hence EG, GH are two lines satisfying the given condition.

Proposition 3.

Given two unequal magnitudes and a circle, it is possible to inscribe a polygon in the circle and to describe another
about it so that the side of the circumscribed polygon may have to the side of the inscribed polygon a ratio less than that of
the greater magnitude to the less.

Let A, B represent the given magnitudes, A being the greater.

Find [Prop. 2] two straight lines F, KL, of which F is the greater, such that

Draw LM perpendicular to LK and of such length that KM = F.

In the given circle let CE, DG be two diameters at right angles. Then, bisecting the angle DOC, bisecting the half again, and
so on, we shall arrive ultimately at an angle (as NOC) less than twice the angle LKM.

Join NC, which (by the construction) will be the side of a regular polygon inscribed in the circle. Let OP be the radius of
the circle bisecting the angle NOC (and therefore bisecting NC at right angles, in H, say), and let the tangent at P meet OC, ON
produced in S, T respectively.

Now, since ∠CON < 2 ∠ LKM,
∠HOC < ∠ LKM,

and the angles at H, L are right;
therefore 



Hence

therefore, a fortiori, by (1),

ST : CN < A : B.
Thus two polygons are found satisfying the given condition.

Proposition 4.

Again, given two unequal magnitudes and a sector, it is possible to describe a polygon about the sector and to inscribe
another in it so that the side of the circumscribed polygon may have to the side of the inscribed polygon a ratio less than
the greater magnitude has to the less.

[The “inscribed polygon” found in this proposition is one which has for two sides the two radii bounding the sector, while
the remaining sides (the number of which is, by construction, some power of 2) subtend equal parts of the arc of the sector; the
“circumscribed polygon” is formed by the tangents parallel to the sides of the inscribed polygon and by the two bounding radii
produced.]

In this case we make the same construction as in the last proposition except that we bisect the angle COD of the sector,
instead of the right angle between two diameters, then bisect the half again, and so on. The proof is exactly similar to the
preceding one.

Proposition 5.

Given a circle and two unequal magnitudes, to describe a polygon about the circle and inscribe another in it, so that
the circumscribed polygon may have to the inscribed a ratio less than the greater magnitude has to the less.

Let A be the given circle and B, C the given magnitudes, B being the greater.

Take two unequal straight lines D, E, of which D is the greater, such that D : E < B : C [Prop. 2], and let F be a mean
proportional between D, E, so that D is also greater than F.

Describe (in the manner of Prop. 3) one polygon about the circle, and inscribe another in it, so that the side of the former
has to the side of the latter a ratio less than the ratio D : F.

Thus the duplicate ratio of the side of the former polygon to the side of the latter is less than the ratio D2: F2.



But the said duplicate ratio of the sides is equal to the ratio of the areas of the polygons, since they are similar;

therefore the area of the circumscribed polygon has to the area of the inscribed polygon a ratio less than the ratio D2 : F2,
or D : E, and a fortiori less than the ratio B : C.

Proposition 6.

“Similarly we can show that, given two unequal magnitudes and a sector, it is possible to circumscribe a polygon about
the sector and inscribe in it another similar one so that the circumscribed may have to the inscribed a ratio less than the
greater magnitude has to the less.

And it is likewise clear that, if a circle or a sector, as well as a certain area, be given, it is possible, by inscribing
regular polygons in the circle or sector, and by continually inscribing such in the remaining segments, to leave segments of
the circle or sector which are [together] less than the given area. For this is proved in the Elements [Eucl. XII. 2].

But it is yet to be proved that, given a circle or sector and an area, it is possible to describe a polygon about the circle
or sector, such that the area remaining between the circumference and the circumscribed figure is less than the given
area.”

The proof for the circle (which, as Archimedes says, can be equally applied to a sector) is as follows.

Let A be the given circle and B the given area.

Now, there being two unequal magnitudes A + B and A, let a polygon (C) be circumscribed about the circle and a polygon
(I) inscribed in it [as in Prop. 5], so that

The circumscribed polygon (C) shall be that required. For the circle (A) is greater than the inscribed polygon (I).
Therefore, from (1), a fortiori,

C : A < A + B : A,

whence C < A + B,
or C – A < B.

Proposition 7.

If in an isosceles cone [i.e. a right circular cone] a pyramid be inscribed having an equilateral base, the surface of the
pyramid excluding the base is equal to a triangle having its base equal to the perimeter of the base of the pyramid and its
height equal to the perpendicular drawn from the apex on one side of the base.

Since the sides, of the base of the pyramid are equal, it follows that the perpendiculars from the apex to all the sides of the
base are equal; and the proof of the proposition is obvious.

Proposition 8.

If a pyramid be circumscribed about an isosceles cone, the surface of the pyramid excluding its base is equal to a



triangle having its base equal to the perimeter of the base of the pyramid and its height equal to the side [i.e. a generator]
of the cone.

The base of the pyramid is a polygon circumscribed about the circular base of the cone, and the line joining the apex of the
cone or pyramid to the point of contact of any side of the polygon is perpendicular to that side. Also all these perpendiculars,
being generators of the cone, are equal; whence the proposition follows immediately.

Proposition 9.

If in the circular base of an isosceles cone a chord be placed, and from its extremities straight lines be drawn to the
apex of the cone, the triangle so formed will be less than the portion of the surface of the cone intercepted between the
lines drawn to the apex.

Let ABC be the circular base of the cone, and O its apex.

Draw a chord AB in the circle, and join OA, OB. Bisect the arc ACB in C, and join AC, BC, OC.

Then Δ OAC + ΔOBC > ΔOAB.

Let the excess of the sum of the first two triangles over the third be equal to the area D.

Then D is either less than the sum of the segments AEC, CFB, or not less.

I. Let D be not less than the sum of the segments referred to.

We have now two surfaces

(1) that consisting of the portion OAEC of the surface of the cone together with the segment AEC, and

(2) the triangle OAC;
and, since the two surfaces have the same extremities (the perimeter of the triangle OAC), the former surface is greater than the
latter, which is included by it [Assumptions, 3 or 4].

Hence (surface OAEG) + (segment AEG) > △ OAC.

Similarly (surface OCFB) + (segment CFB) > △ OBC.

Therefore, since D is not less than the sum of the segments, we have, by addition,

(surface OAECFB) + D > ΔOAC + ΔOBC

> ΔOAB + D, by hypothesis.

Taking away the common part D, we have the required result.

II. Let D be less than the sum of the segments AEC, GFB.

If now we bisect the arcs AC, CB, then bisect the halves, and so on, we shall ultimately leave segments which are together
less than D. [Prop. 6]

Let AGE, EHC, CKF, FLB be those segments, and join OE, OF.

Then, as before,



(surface OAGE) + (segment AGE) > Δ OAE
and (surface OEHC) + (segment EHC) > Δ OEC.
Therefore (surface OAGHC) + (segments AGE, EHG)

> ΔOAE + ΔOEC

> ΔOAC, a fortiori.
Similarly for the part of the surface of the cone bounded by OC, OB and the arc CFB.

Hence, by addition,
(surface OAGEHCKFLB)+ (segments AGE, EHC, CKF, FLB)

> ΔOAC + ΔOBC

> ΔOAB + D, by hypothesis.

But the sum of the segments is less than D, and the required result follows.

Proposition 10.
If in the plane of the circular base of an isosceles cone two tangents be drawn to the circle meeting in a point, and the

points of contact and the point of concourse of the tangents be respectively joined to the apex of the cone, the sum of the
two triangles formed by the joining lines and the two tangents are together greater than the included portion of the surface
of the cone.

Let ABC be the circular base of the cone, o its apex, AD, BD the two tangents to the circle meeting in D. Join OA, OB: OD.

Let ECF be drawn touching the circle at C, the middle point of the arc ACB, and therefore parallel to AB. Join OE, OF.

Then ED + DF > EF,
and, adding AE + FB to each side,

AD + DB > AE + EF + FB.

Now OA, OC, OB, being generators of the cone, are equal, and they are respectively perpendicular to the tangents at A, C,
B.

It follows that

ΔOAD + ΔODB > ΔOAE + ΔOEF + ΔOFB.

Let the area G be equal to the excess of the first sum over the second.

G is then either less, or not less, than the sum of the spaces EAHC, FCKB remaining between the circle and the tangents,
which sum we will call L.



I. Let G be not less than L.

We have now two surfaces

(1) that of the pyramid with apex O and base AEFB, excluding the face OAB,

(2) that consisting of the part OACB of the surface of the cone together with the segment ACB.

These two surfaces have the same extremities, viz. the perimeter of the triangle OAB, and, since the former includes the
latter, the former is the greater [Assumptions, 4].

That is, the surface of the pyramid exclusive of the face OAB is greater than the sum of the surface OACB and the segment
ACB.

Taking away the segment from each sum, we have

Δ OAE + ΔOEF + ΔOFB + L > the surface OAHCKB.
And G is not less than L.
It follows that

ΔOAE + ΔOEF + ΔOFB + G,

which is by hypothesis equal to △ OAD + △ ODB, is greater than the same surface.

II. Let G be less than L.

If we bisect the arcs AC, CB and draw tangents at their middle points, then bisect the halves and draw tangents, and so on,
we shall lastly arrive at a polygon such that the sum of the parts remaining between the sides of the polygon and the
circumference of the segment is less than G.

Let the remainders be those between the segment and the polygon APQRSB, and let their sum be M. Join OP, OQ, etc.

Then, as before,
ΔOAE + ΔOEF + ΔOFB > ΔOAP + ΔOPQ + … +ΔOSB.

Also, as before,

(surface of pyramid OAPQRSB excluding the face OAB)
> the part OAGB of the surface of the cone together with the segment ACB.

Taking away the segment from each sum,
ΔOAP + ΔOPQ + … + M > the part OACB of the

surface of the cone.

Hence, a fortiori,
ΔOAE + ΔOEF + ΔOFB + G,

which is by hypothesis equal to
ΔOAD + ΔODB,

is greater than the part OACB of the surface of the cone.

Proposition 11.

If a plane parallel to the axis of a right cylinder cut the cylinder, the part of the surface of the cylinder cut off by the
plane is greater than the area of the parallelogram in which the plane cuts it.

Proposition 12.

If at the extremities of two generators of any right cylinder tangents be drawn to the circidar bases in the planes of
those bases respectively, and if the pairs of tangents meet, the parallelograms formed by each generator and the two
corresponding tangents respectively are together greater than the included portion of the surface of the cylinder between
the two generators.



[The proofs of these two propositions follow exactly the methods of Props. 9, 10respectively, and it is therefore
unnecessary to reproduce them.]

“From the properties thus proved it is clear (1) that, if a pyramid be inscribed in an isosceles cone, the surface of the
pyramid excluding the base is less than the surface of the cone [excluding the base], and (2) that, if a pyramid be
circumscribed about an isosceles coney the surface of the pyramid excluding the base is greater than the surface of the
cone excluding the base.

“It is also clear from what has been proved both (1) that, if a prism be inscribed in a right cylinder, the surface of the
prism made up of its parallelograms [i.e. excluding its bases] is less than the surface of the cylinder excluding its bases,
and (2) that, if a prism be circumscribed about a right cylinder, the surface of the prism made up of its parallelograms is
greater than the surface of the cylinder excluding its bases.”

Proposition 13.

The surface of any right cylinder excluding the bases is equal to a circle whose radius is a mean proportional between
the side [i.e. a generator] of the cylinder and the diameter of its base.

Let the base of the cylinder be the circle A, and make CD equal to the diameter of this circle, and EF equal to the height of
the cylinder.

Let H be a mean proportional between CD, EF and B a circle with radius equal to H.

Then the circle B shall be equal to the surface of the cylinder (excluding the bases), which we will call S.

For, if not, B must be either greater or less than S.

I. Suppose B < S.

Then it is possible to circumscribe a regular polygon about B, and to inscribe another in it, such that the ratio of the former
to the latter is less than the ratio S : B.

Suppose this done, and circumscribe about A a polygon similar to that described about B; then erect on the polygon about A
a prism of the same height as the cylinder. The prism will therefore be circumscribed to the cylinder.

Let KD, perpendicular to CD, and FL, perpendicular to EF, be each equal to the perimeter of the polygon about A. Bisect
CD in M, and join MK.

Then Δ KDM = the polygon about A.

Also  EL = surface of prism (excluding bases).

Produce FE to N so that FE = EN and join NL.

Now the polygons about A, B, being similar, are in the duplicate ratio of the radii of A, B.



Thus

But (polygon about B) : (polygon in B) < S : B.

Therefore
(surface of prism about A) : (polygon in B) < S : B,

and, alternately,
(surface of prism about A) : S < (polygon in B) : B;

which is impossible, since the surface of the prism is greater than S, while the polygon inscribed in B is less than B.

Therefore B  S.

II. Suppose B > S.

Let a regular polygon be circumscribed about B and another inscribed in it so that
(polygon about B) : (polygon in B) < B : S.

Inscribe in A a polygon similar to that inscribed in B, and erect a prism on the polygon inscribed in A of the same height as
the cylinder.

Again, let DK, FL drawn as before, be each equal to the perimeter of the polygon inscribed in A.

Then, in this case,
Δ KDM > (polygon inscribed in A)

(since the perpendicular from the centre on a side of the polygon is less than the radius of A).

Also Δ LFN =  EL = surface of prism (excluding bases).

Now

And Δ KDM > (polygon in A).

Therefore

△ LFN, or (surface of prism) > (polygon in B).

But this is impossible, because

Hence B is neither greater nor less than S, and therefore
B = S.



Proposition 14.

The surface of any isosceles cone excluding the base is equal to a circle whose radius is a mean proportional between
the side of the cone [a generator] and the radius of the circle which is the base of the cone.

Let the circle A be the base of the cone; draw C equal to the radius of the circle, and D equal to the side of the cone, and let
E be a mean proportional between C, D.

Draw a circle B with radius equal to E.

Then shall B be equal to the surface of the cone (excluding the base), which we will call S.

If not, B must be either greater or less than S.

I. Suppose B < S.

Let a regular polygon be described about B and a similar one inscribed in it such that the former has to the latter a ratio less
than the ratio S : B.

Describe about A another similar polygon, and on it set up a pyramid with apex the same as that of the cone.

Then (polygon about A) : (polygon about B)

Therefore
(surface of pyramid) = (polygon about B).

Now (polygon about B) : (polygon in B) < S : B.

Therefore
(surface of pyramid) : (polygon in B) < S : B,

which is impossible, (because the surface of the pyramid is greater than S, while the polygon in B is less than B).

Hence B  S.

II. Suppose B > S.

Take regular polygons circumscribed and inscribed to B such that the ratio of the former to the latter is less than the ratio B
: S.

Inscribe in A a similar polygon to that inscribed in B, and erect a pyramid on the polygon inscribed in A with apex the same
as that of the cone.

In this case

> (polygon in A) : (surface of pyramid excluding base).



This is clear because the ratio of C to D is greater than the ratio of the perpendicular from the centre of A on a side of the
polygon to the perpendicular from the apex of the cone on the same side*.

Therefore
(surface of pyramid) > (polygon in B).

But (polygon about B) : (polygon in B) < B : S
Therefore, α fortiori,

(polygon about B) : (surface of pyramid) < B : S ;

which is impossible.

Since therefore B is neither greater nor less than S,
B = S.

Proposition 15.

The surface of any isosceles cone has the same ratio to its base as the side of the cone has to the radius of the base.

By Prop. 14, the surface of the cone is equal to a circle whose radius is a mean proportional between the side of the cone
and the radius of the base.

Hence, since circles are to one another as the squares of their radii, the proposition follows.

Proposition 16.

If an isosceles com be cut by a plane parallel to the base, the portion of the surface of the cone between the parallel
planes is equal to a circle whose radius is a mean proportional between  (1) the portion of the side of the cone intercepted
by the parallel planes and (2) the line which is equal to the sum of the radii of the circles in the parallel planes.

Let OAB be a triangle through the axis of a cone, BE its intersection with the plane cutting off the frustum, and OFC the axis
of the cone.

Then the surface of the cone OAB is equal to a circle whose radius is equal to . [Prop. 14.]

Similarly the surface of the cone ODE is equal to a circle whose radius is equal to .

And the surface of the frustum is equal to the difference between the two circles.

Now
OA .AC – OD. DF = DA . AC + OD. AC – OD. DF.

But OD . AC = OA. DF,
since OA : AC = OD : DF.

And, since circles are to one another as the squares of their radii, it follows that the difference between the circles whose radii



are  respectively is equal to a circle whose radius is .

Therefore the surface of the frustum is equal to this circle.

Lemmas.

“1. Cones having equal height have the same ratio as their bases; and those having equal bases have the same ratio as
their heights*.

2. If a cylinder be cut by a plane parallel to the base, then, as the cylinder is to the cylinder, so is the axis to the axis†.

3. The cones which have the same bases as the cylinders [and equal height] are in the same ratio as the cylinders.

4. Also the bases of equal cones are reciprocally proportional to their heights ; and those cones whose bases are
reciprocally proportional to their heights are equal‡.

5. Also the cones, the diameters of whose bases have the same ratio as their axes, are to one another in the triplicate
ratio of the diameters of the bases §.

And all these propositions have been proved by earlier geometers.”

Proposition 17.

If there be two isosceles cones, and the surface of one cone be equal to the base of the other, while the perpendicular
from the centre of the base  [of the first cone] on the side of that cone is equal to the height [of the second], the cones will
be equal.

Let OAB, DEF be triangles through the axes of two cones respectively, C, G the centres of the respective bases, GH the
perpendicular from G on FD; and suppose that the base of the cone OAB is equal to the surface of the cone DEF, and that OC =
GH.

Then, since the base of OAB is equal to the surface of DEF,
(base of cone OAB) : (base of cone DEF)

Therefore the bases of the cones are reciprocally proportional to their heights; whence the cones are equal. [Lemma 4.]

Proposition 18.

Any solid rhombus consisting of isosceles cones is equal to the cone which has its base equal to the surface of one of
the cones composing the rhombus and its height equal to the perpendicular drawn from the apex of the second cone to one
side of the first cone.



Let the rhombus be OABD consisting of two cones with apices O, D and with a common base (the circle about AB as
diameter).

Let FHK be another cone with base equal to the surface of the cone OAB and height FG equal to DE, the perpendicular
from D on OB.

Then shall the cone FHK be equal to the rhombus.

Construct a third cone LMN with base (the circle about MN) equal to the base of OAB and height LP equal to OD.

Then, since

But [Lemma 1 ] OD : CD = (rhombus OADB) : (cone DAB),
and LP : CD = (cone LMN) : (cone DAB).

It follows that

Again, since AB = MN, and
(surface of OAB) = (base of FHK),

(base of FHK) : (base of LMN)
= (surface of OAB): (base of OAB)
= OB : BC [Prop. 15]
= OD : DE, by similar triangles,
= LP : FG, by hypothesis.

Thus, in the cones FHK, LMN, the bases are reciprocally proportional to the heights.

Therefore the cones FHK, LMN are equal, and hence, by (1), the cone FHK is equal to the given solid rhombus.

Proposition 19.

If an isosceles cone be cut by a plane parallel to the base, and on the resulting circular section a cone be described
having as its apex the centre of the base [of the first cone], and if the rhombus so formed be taken away from the whole
cone, the part remaining will be equal to the cone with base equal to the surface of the portion of the first cone between the
parallel planes and with height equal to the perpendicular drawn from the centre of the base of the first cone on one side
of that cone.

Let the cone OAB be cut by a plane parallel to the base in the circle on DE as diameter. Let C be the centre of the base of
the cone, and with C as apex and the circle about DE as base describe a cone, making with the cone ODE the rhombus ODCE.

Take a cone FGH with base equal to the surface of the frustum DABE and height equal to the perpendicular (CK) from C on
AO.



Then shall the cone FGH be equal to the difference between the cone OAB and the rhombus ODCE.

Take (1) a cone LMN with base equal to the surface of the cone OAB, and height equal to CK,

(2) a cone PQR with base equal to the surface of the cone ODE and height equal to CK.

Now, since the surface of the cone OAB is equal to the surface of the cone ODE together with that of the frustum DABE, we
have, by the construction,

(base of LMN) = (base of FGH) + (base of PQR)

and, since the heights of the three cones are equal,
(cone LMN) = (cone FGH) + (cone PQR).

But the cone LMN is equal to the cone OAB [Prop. 17], and the cone PQR is equal to the rhombus ODCE [Prop. 18].

Therefore (cone OAB) = (cone FGH) + (rhombus ODCE), and the proposition is proved.

Proposition 20.

If one of the two isosceles cones forming a rhombus be cut by a plane parallel to the base and on the resulting circular
section a cone be described having the same apex as the second cone, and if the resulting rhombus be taken from the whole
rhombus, the remainder will be equal to the cone with base equal to the surface of the portion of the cone between the
parallel planes and with height equal to the perpendicular drawn from the apex of the second* cone to the side of the first
cone.

Let the rhombus be OACB, and let the cone OAB be cut by a plane parallel to its base in the circle about DE as diameter.
With this circle as base and C as apex describe a cone, which therefore with ODE forms the rhombus ODCE.

Take a cone FGH with base equal to the surface of the frustum DABE and height equal to the perpendicular (CK) from C on
OA.



The cone FGH shall be equal to the difference between the rhombi OACB, ODCE.

For take (1) a cone LMN with base equal to the surface of OAB and height equal to CK,

(2) a cone PQR, with base equal to the surface of ODE, and height equal to CK.

Then, since the surface of OAB is equal to the surface of ODE together with that of the frustum DABE, we have, by
construction,

(base of LMN) = (base of PQR) + (base of FGH),

and the three cones are of equal height;
therefore (cone LMN) = (cone PQR) + (cone FGH).

But the cone LMN is equal to the rhombus OACB, and the cone PQR is equal to the rhombus ODCE [Prop. 18].

Hence the cone FGH is equal to the difference between the two rhombi OACB, ODCE.

Proposition 21.

A regular polygon of an even number of sides being inscribed in a circle, as ABC…A′…C′B′A, so that AA′ is a diameter,
if two angular points next but one to each other, as B, B′, be joined, and the other lines parallel to BB′ and joining pairs of
angular points be drawn, as CC′, DD′…, then

(BB' + CC' + …) : AA' = A'B : BA.

Let BB′, CC′, DD′,… meet A A′ in F, G, H,…; and let CB′, DC′,… be joined meeting AA′ in K, L,… respectively.

Then clearly CB′, DC′,… are parallel to one another and to AB.

Hence, by similar triangles,

and, summing the antecedents and consequents respectively, we have

Proposition 22.



If a polygon be inscribed in a segment of a circle LAL′ so that all its sides excluding the base are equal and their
number even, as LK…A…K′L′, A being the middle point of the segment, and if the lines BB′ CC′,… parallel to the base LL′
and joining pairs of angular points be drawn, then

(BB' + CC' + … + LM) : AM = A'B : BA
where M is the middle point of LL′ and AA′ is the diameter through M.

Joining CB′, DC′,…LK′, as in the last proposition, and supposing that they meet AM in P, Q,…R , while BB′, CC′,…, KK′
meet AM in F, G,… H, we have, by similar triangles,

and, summing the antecedents and consequents, we obtain

Proposition 23.

Take a great circle ABC… of a sphere, and inscribe in it a regular polygon whose sides are a multiple of four in number.
Let AA′, MM′ be diameters at right angles and joining opposite angular points of the polygon.



Then, if the polygon and great circle revolve together about the diameter AA′, the angular points of the polygon, except A, A′,
will describe circles on the surface of the sphere at right angles to the diameter A A′. Also the sides of the polygon will
describe portions of conical surfaces, e.g. BC will describe a surface forming part of a cone whose base is a circle about CC′
as diameter and whose apex is the point in which CB, C′B′ produced meet each other and the diameter AA′.

Comparing the hemisphere MAM′ and that half of the figure described by the revolution of the polygon which is included in
the hemisphere, we see that the surface of the hemisphere and the surface of the inscribed figure have the same boundaries in
one plane (viz. the circle on MM′ as diameter), the former surface entirely includes the latter, and they are both concave in the
same direction.

Therefore [Assumptions, 4] the surface of the hemisphere is greater than that of the inscribed figure; and the same is true of
the other halves of the figures.

Hence the surface of the sphere is greater than the surface described by the revolution of the polygon inscribed in the
great circle about the diameter of the great circle.

Proposition 24.

If a regular polygon AB…A′…B′ A, the number of whose sides is a multiple of four, be inscribed in a great circle of a
sphere, and if BB′ subtending two sides be joined, and all the other lines parallel to BB′ and joining pairs of angular points
be drawn, then the surface of the figure inscribed in the sphere by the revolution of the polygon about the diameter AA′ is
equal to a circle the square of whose radius is equal to the rectangle

BA (BB' + CC' + …).

The surface of the figure is made up of the surfaces of parts of different cones.

Now the surface of the cone ABB′ is equal to a circle whose radius is . [Prop. 14]



The surface of the frustum BB′C′C is equal to a circle of radius , [Prop. 16]
and so on.

It follows, since BA = BC = …, that the whole surface is equal to a circle whose radius is equal to

Proposition 25.

The surface of the figure inscribed in a sphere as in the last propositions, consisting of portions of conical surfaces, is
less than four times the greatest circle in the sphere.

Let AB…A′ …B′A be a regular polygon inscribed in a great circle, the number of its sides being a multiple of four.

As before, let BB′ be drawn subtending two sides, and CC′…YY′ parallel to BB′.
Let R be a circle such that the square of its radius is equal to

AB(BB' + CC' + … + YY'),
so that the surface of the figure inscribed in the sphere is equal to R. [Prop. 24]

Now
(BB' + CC'+ . . . + YY') : AA' = A'B : AB, [Prop. 21]

whence AB(BB' + CC' + … + YY') = AA'. A'B.

Hence (radius of R)2 = AA' . A'B

< AA'2.
Therefore the surface of the inscribed figure, or the circle R, is less than four times the circle AMA′M′.

Proposition 26.

The figure inscribed as above in a sphere is equal  [in volume] to a cone whose base is a circle equal to the surface of
the figure inscribed in the sphere and whose height is equal to the perpendicular drawn from the centre of the sphere to
one side of the polygon.

Suppose, as before, that AB…A′…B′A is the regular polygon inscribed in a great circle, and let BB′, CC′, … be joined.



With apex O construct cones whose bases are the circles on BB′, CC′,… as diameters in planes perpendicular to AA′.
Then OBAB′ is a solid rhombus, and its volume is equal to a cone whose base is equal to the surface of the cone ABB′ and

whose height is equal to the perpendicular from O on AB [Prop. 18]. Let the length of the perpendicular be p.

Again, if CB, C′B′ produced meet in T, the portion of the solid figure which is described by the revolution of the triangle
BOC about AA′ is equal to the difference between the rhombi OCTC′ and OBTB′, i.e. to a cone whose base is equal to the
surface of the frustum BB′C′C and whose height is p [Prop. 20].

Proceeding in this manner, and adding, we prove that, since cones of equal height are to one another as their bases, the
volume of the solid of revolution is equal to a cone with height p and base equal to the sum of the surfaces of the cone BAB′, the
frustum BB′C′C, etc., i.e. a cone with height p and base equal to the surface of the solid.

Proposition 27.

The figure inscribed in the sphere as before is less than four times the cone whose base is equal to a great circle of the
sphere and whose height is equal to the radius of the sphere.

By Prop. 26 the volume of the solid figure is equal to a cone whose base is equal to the surface of the solid and whose
height is p, the perpendicular from O on any side of the polygon. Let R be such a cone.

Take also a cone S with base equal to the great circle, and height equal to the radius, of the sphere.

Now, since the surface of the inscribed solid is less than four times the great circle [Prop. 25], the base of the cone R is
less than four times the base of the cone S.

Also the height (p) of R is less than the height of S.

Therefore the volume of R is less than four times that of S; and the proposition is proved.

Proposition 28.

Let a regular polygon, whose sides are a multiple of four in number, be circumscribed about a great circle of a given
sphere, as AB…A′ …B′A; and about the polygon describe another circle, which will therefore have the same centre as the great
circle of the sphere. Let AA′ bisect the polygon and cut the sphere in a, a′.



If the great circle and the circumscribed polygon revolve together about AA′, the great circle will describe the surface of a
sphere, the angular points of the polygon except A, A′ will move round the surface of a larger sphere, the points of contact of the
sides of the polygon with the great circle of the inner sphere will describe circles on that sphere in planes perpendicular to AA′
and the sides of the polygon themselves will describe portions of conical surfaces. The circumscribed figure will thus be
greater than the sphere itself.

Let any side, as BM, touch the inner circle in K, and let K’ be the point of contact of the circle with B′M′.

Then the circle described by the revolution of KK′ about AA′ is the boundary in one plane of two surfaces

(1) the surface formed by the revolution of the circular segment KaK′ and

(2) the surface formed by the revolution of the part KB…A…B′K′ of the polygon.

Now the second surface entirely includes the first, and they are both concave in the same direction;

therefore [Assumptions, 4] the second surface is greater than the first.

The same is true of the portion of the surface on the opposite side of the circle on KK′ as diameter.

Hence, adding, we see that the surface of the figure circumscribed to the given sphere is greater than that of the sphere
itself.

Proposition 29.

In a figure circumscribed to a sphere in the manner shown in the previous proposition the surface is equal to a circle
the square on whose radius is equal to AB(BB′ + CC′ +…).

For the figure circumscribed to the sphere is inscribed in a larger sphere, and the proof of Prop. 24 applies.

Proposition 30.

The surface of a figure circumscribed as before about a sphere is greater than four times the great circle of the sphere.



Let AB…A′ …B′A be the regular polygon of 4n sides which by its revolution about AA′ describes the figure circumscribing
the sphere of which ama′m′ is a great circle. Suppose aa′, AA′ to be in one straight line.

Let R be a circle equal to the surface of the circumscribed solid.

Now (BB' + CC' + …) : AA' = A'B : BA, [as in Prop. 21 ]
so that AB (BB' + CC' + …) = AA' . A'B.

Hence (radius of R) [Prop. 29]
> A'B

But A′B = 2OP, where P is the point in which AB touches the circle ama′m′.

Therefore (radius of R) > (diameter of circle ama′m′);
whence R, and therefore the surface of the circumscribed solid, is greater than four times the great circle of the given sphere.

Proposition 31.

The solid of revolution circumscribed as before about a sphere is equal to a cone whose base is equal to the surface of
the solid and whose height is equal to the radius of the sphere.

The solid is, as before, a solid inscribed in a larger sphere; and, since the perpendicular on any side of the revolving
polygon is equal to the radius of the inner sphere, the proposition is identical with Prop. 26.

COR. The solid circumscribed about the smaller sphere is greater than four times the cone whose base is a great circle
of the sphere and whose height is equal to the radius of the sphere.

For, since the surface of the solid is greater than four times the great circle of the inner sphere [Prop. 30], the cone whose
base is equal to the surface of the solid and whose height is the radius of the sphere is greater than four times the cone of the
same height which has the great circle for base. [Lemma 1.]

Hence, by the proposition, the volume of the solid is greater than four times the latter cone.

Proposition 32.

If a regular polygon with 4n sides be inscribed in a great circle of a sphere, as ab…a′…b′a, and a similar polygon AB…
A′…B′A be described about the great circle, and if the polygons revolve with the great circle about the diameters aa′, AA′
respectively, so that they describe the surfaces of solid figures inscribed in and circumscribed to the sphere respectively,
then

(1) the surfaces of the circumscribed and inscribed figures are to one another in the duplicate ratio of their sides, and
(2) the figures themselves [i.e. their volumes] are in the triplicate ratio of their sides.

(1) Let AA′, aa′ be in the same straight line, and let MmOm′M′ be a diameter at right angles to them.



Join BB′, CC′… and bb′, cc′,… which will all be parallel to one another and MM′.
Suppose R, S to be circles such that

R = (surface of circumscribed solid),

S = (surface of inscribed solid).

Then (radius of R)2 = AB(BB' + CC' + …) [Prop. 29]
(radius of S)2 = ab (bb' + cc' + …). [Prop. 24]

And, since the polygons are similar, the rectangles in these two equations are similar, and are therefore in the ratio of
AB2 : ab2.

Hence

(surface of circumscribed solid) : (surface of inscribed solid)
= AB2 : ab2.

(2) Take a cone V whose base is the circle R and whose height is equal to Oa, and a cone W whose base is the circle S and
whose height is equal to the perpendicular from O on ab, which we will call p.

Then V, W are respectively equal to the volumes of the circumscribed and inscribed figures. [Props. 31, 26]

Now, since the polygons are similar,
AB : ab = Oa : p

= (height of cone V) : (height of cone W) ;
and, as shown above, the bases of the cones (the circles R, S) are in the ratio of AB2 to ab2.

Therefore V : W = AB3 : ab3.

Proposition 33.

The surface of any sphere is equal to four times the greatest circle in it.
Let C be a circle equal to four times the great circle.

Then, if C is not equal to the surface of the sphere, it must either be less or greater.

I. Suppose C less than the surface of the sphere.

It is then possible to find two lines β, γ, of which β is the greater, such that
β : γ < (surface of sphere) : C. [Prop. 2]

Take such lines, and let δ be a mean proportional between them.

Suppose similar regular polygons with 4n sides circumscribed about and inscribed in a great circle such that the ratio of
their sides is less than the ratio β : δ. [Prop. 3]



Let the polygons with the circle revolve together about a diameter common to all, describing solids of revolution as before.

Then (surface of outer solid) : (surface of inner solid)
= (side of outer)2 : (side of inner)2 [Prop. 32]
< β2 : δ2, or β : γ
< (surface of sphere) : C, a fortiori.

But this is impossible, since the surface of the circumscribed solid is greater than that of the sphere [Prop. 28], while the
surface of the inscribed solid is less than C [Prop. 25].

Therefore C is not less than the surface of the sphere.

II. Suppose C greater than the surface of the sphere.

Take lines β, γ, of which β is the greater, such that
β : γ < C : (surface of sphere).

Circumscribe and inscribe to the great circle similar regular polygons, as before, such that their sides are in a ratio less
than that of β to δ, and suppose solids of revolution generated in the usual manner.

Then, in this case,

(surface of circumscribed solid) : (surface of inscribed solid)
< C : (surface of sphere).

But this is impossible, because the surface of the circumscribed solid is greater than C [Prop. 30], while the surface of the
inscribed solid is less than that of the sphere [Prop. 23].

Thus C is not greater than the surface of the sphere.

Therefore, since it is neither greater nor less, C is equal to the surface of the sphere.

Proposition 34.

Any sphere is equal to four times the cone which has its base equal to the greatest circle in the sphere and its height
equal to the radius of the sphere.

Let the sphere be that of which ama′m′ is a great circle.

If now the sphere is not equal to four times the cone described, it is either greater or less.

I. If possible, let the sphere be greater than four times the cone.

Suppose V to be a cone whose base is equal to four times the great circle and whose height is equal to the radius of the
sphere.

Then, by hypothesis, the sphere is greater than V; and two lines β, γ can be found (of which β is the greater) such that



β : γ > (volume of sphere) : V.

Between β and γ place two arithmetic means δ, ε.

As before, let similar regular polygons with sides 4n in number be circumscribed about and inscribed in the great circle,
such that their sides are in a ratio less than β : δ.

Imagine the diameter aa′ of the circle to be in the same straight line with a diameter of both polygons, and imagine the latter
to revolve with the circle about aa′, describing the surfaces of two solids of revolution. The volumes of these solids are
therefore in the triplicate ratio of their sides. [Prop. 32]

Thus (vol. of outer solid) : (vol. of inscribed solid)
< β3 : γ3, by hypothesis,
< β : γ, a fortiori (since β : γ > β3 : δ3)*,
< (volume of sphere) : V, a fortiori.

But this is impossible, since the volume of the circumscribed solid is greater than that of the sphere [Prop. 28], while the
volume of the inscribed solid is less than V [Prop. 27].

Hence the sphere is not greater than V, or four times the cone described in the enunciation.

II. If possible, let the sphere be less than V.

In this case we take β, γ (β being the greater) such that
β : γ < V : (volume of sphere).

The rest of the construction and proof proceeding as before, we have finally
(volume of outer solid) : (volume of inscribed solid)

< V : (volume of sphere).

But this is impossible, because the volume of the outer solid is greater than V [Prop. 31, Cor.], and the volume of the
inscribed solid is less than the volume of the sphere.

Hence the sphere is not less than V.

Since then the sphere is neither less nor greater than V, it is equal to V, or to four times the cone described in the
enunciation.

COR. From what has been proved it follows that every cylinder whose base is the greatest circle in a sphere and whose
height is equal to the diameter of the sphere is  of the sphere, and its surface together with its bases is  of the surface of
the sphere.

For the cylinder is three times the cone with the same base and height [Eucl. XII. 10], i.e. six times the cone with the same
base and with height equal to the radius of the sphere.

But the sphere is four times the latter cone [Prop. 34]. Therefore the cylinder is  of the sphere.



Again, the surface of a cylinder (excluding the bases) is equal to a circle whose radius is a mean proportional between the
height of the cylinder and the diameter of its base [Prop. 13].

In this case the height is equal to the diameter of the base and therefore the circle is that whose radius is the diameter of the
sphere, or a circle equal to four times the great circle of the sphere.

Therefore the surface of the cylinder with the bases is equal to six times the great circle.

And the surface of the sphere is four times the great circle [Prop. 33]; whence
(surface of cylinder with bases) = · (surface of sphere).

Proposition 35.

If in a segment of a circle LAL′ (where A is the middle point of the arc) a polygon LK…A…K′L′ be inscribed of which
LL′ is one side, while the other sides are 2n in number and all equal, and if the polygon revolve with the segment about the
diameter AM, generating a solid figure inscribed in a segment of a sphere, then the surface of the inscribed solid is equal
to a circle the square on whose radius is equal to the rectangle

The surface of the inscribed figure is made up of portions of surfaces of cones.

If we take these successively, the surface of the cone BAB′ is equal to a circle whose radius is

The surface of the frustum of a cone BCC′B′ is equal to a circle whose radius is

and so on.

Proceeding in this way and adding, we find, since circles are to one another as the squares of their radii, that the surface of
the inscribed figure is equal to a circle whose radius is

Proposition 36.

The surface of the figure inscribed as before in the segment of a sphere is less than that of the segment of the sphere.



This is clear, because the circular base of the segment is a common boundary of each of two surfaces, of which one, the
segment, includes the other, the solid, while both are concave in the same direction [Assumptions, 4].

Proposition 37.

The surface of the solid figure inscribed in the segment of the sphere by the revolution of LK…A…K′L′ about AM is less
than a circle with radius equal to AL.

Let the diameter AM meet the circle of which LAL′ is a segment again in A′. Join A′B.

As in Prop. 35, the surface of the inscribed solid is equal to a circle the square on whose radius is
AB (BB' + CC' + … + KK' + LM).

But this rectangle = A'B . AM [Prop. 22]
< A'A . AM
< AL2.

Hence the surface of the inscribed solid is less than the circle whose radius is AL.

Proposition 38.

The solid figure described as before in a segment of a sphere less than a hemisphere, together with the cone whose base
is the base of the segment and whose apex is the centre of the sphere, is equal to a cone whose base is equal to the surface
of the inscribed solid and whose height is equal to the perpendicular from the centre of the sphere on any side of the
polygon.

Let O be the centre of the sphere, and p the length of the perpendicular from O on AB.

Suppose cones described with O as apex, and with the circles on BB′, CC′, … as diameters as bases.

Then the rhombus OBAB′ is equal to a cone whose base is equal to the surface of the cone BAB′, and whose height is p.
[Prop. 18]

Again, if CB, C′B′ meet in T, the solid described by the triangle BOC as the polygon revolves about AO is the difference
between the rhombi OCTC′ and OBTB′, and is therefore equal to a cone whose base is equal to the surface of the frustum
BCC′B′ and whose height is p. [Prop. 20]

Similarly for the part of the solid described by the triangle COD as the polygon revolves ; and so on.



Hence, by addition, the solid figure inscribed in the segment together with the cone OLL′ is equal to a cone whose base is
the surface of the inscribed solid and whose height is p.

COR. The cone whose base is a circle with radius equal to AL and whose height is equal to the radius of the sphere is
greater than the sum of the inscribed solid and the cone OLL′.

For, by the proposition, the inscribed solid together with the cone OLL′ is equal to a cone with base equal to the surface of
the solid and with height p.

This latter cone is less than a cone with height equal to OA and with base equal to the circle whose radius is AL, because
the height p is less than OA, while the surface of the solid is less than a circle with radius AL. [Prop. 37]

Proposition 39.

Let lal′ be a segment of a great circle of a sphere, being less than a semicircle. Let O be the centre of the sphere, and join
Ol, Ol′. Suppose a polygon circumscribed about the sector Olal′ such that its sides, excluding the two radii, are 2n in number
and all equal, as LK,… BA, AB′ … K′L′; and let OA be that radius of the great circle which bisects the segment lal′.

The circle circumscribing the polygon will then have the same centre O as the given great circle.

Now suppose the polygon and the two circles to revolve together about OA. The two circles will describe spheres, the
angular points except A will describe circles on the outer sphere, with diameters BB′ etc., the points of contact of the sides with
the inner segment will describe circles on the inner sphere, the sides themselves will describe the surfaces of cones or frusta of
cones, and the whole figure circumscribed to the segment of the inner sphere by the revolution of the equal sides of the polygon
will have for its base the circle on LL′ as diameter.

The surface of the solid figure so circumscribed about the sector of the sphere  [excluding its base] will be greater than
that of the segment of the sphere whose base is the circle on ll′ as diameter.

For draw the tangents lT, l′T′ to the inner segment at l, l′. These with the sides of the polygon will describe by their
revolution a solid whose surface is greater than that of the segment [Assumptions, 4].

But the surface described by the revolution of lT is less than that described by the revolution of LT, since the angle TlL is a
right angle, and therefore LT > lT.

Hence, a fortiori, the surface described by LK…A…K′L′ is greater than that of the segment.

COR. The surface of the figure so described about the sector of the sphere is equal to a circle the square on whose
radius is equal to the rectangle



AB(BB' + CC' + …+ KK' + LL').
For the circumscribed figure is inscribed in the outer sphere, and the proof of Prop. 35 therefore applies.

Proposition 40.

The surface of the figure circumscribed to the sector as before is greater than a circle whose radius is equal to al.
Let the diameter AaO meet the great circle and the circle circumscribing the revolving polygon again in a′, A′. Join A′B, and

let ON be drawn to N, the point of contact of AB with the inner circle.

Now, by Prop. 39, Cor., the surface of the solid figure circumscribed to the sector OlAl′ is equal to a circle the square on
whose radius is equal to the rectangle

But this rectangle is equal to A′B. AM [as in Prop. 22].

Next, since AL′, al′ are parallel, the triangles AML′, aml′ are similar. And AL′ > al′; therefore AM > am.

Also A'B = 2ON = aa'.

Therefore A'B .AM > am . aa'

> al'2.
Hence the surface of the solid figure circumscribed to the sector is greater than a circle whose radius is equal to al′, or al.

COR. 1. The volume of the figure circumscribed about the sector together with the cone whose apex is O and base the
circle on LL′ as diameter, is equal to the volume of a cone whose base is equal to the surface of the circumscribed figure
and whose height is ON.

For the figure is inscribed in the outer sphere which has the same centre as the inner. Hence the proof of Prop. 38 applies.

COR. 2. The volume of the circumscribed figure with the cone OLL′ is greater than the cone whose base is a circle with
radius equal to al and whose height is equal to the radius (Oa) of the inner sphere.

For the volume of the figure with the cone OLL' is equal to a cone whose base is equal to the surface of the figure and
whose height is equal to ON.

And the surface of the figure is greater than a circle with radius equal to al [Prop. 40], while the heights Oa, ON are equal.

Proposition 41.



Let lal′ be a segment of a great circle of a sphere which is less than a semicircle.

Suppose a polygon inscribed in the sector Olal′ such that the sides lk,… ba, ab′,… k′l′ are 2n in number and all equal. Let a
similar polygon be circumscribed about the sector so that its sides are parallel to those of the first polygon; and draw the circle
circumscribing the outer polygon.

Now let the polygons and circles revolve together about OaA, the radius bisecting the segment lal′.

Then (1) the surfaces of the outer and inner solids of revolution so described are in the ratio of AB2 to ab2, and (2)
their volumes together with the corresponding cones with the same base and with apex O in each case are as AB3 to ab3.

(1) For the surfaces are equal to circles the squares on whose radii are equal respectively to

and

But these rectangles are in the ratio of AB2 to ab2. Therefore so are the surfaces.

(2) Let OnN be drawn perpendicular to ab and AB; and suppose the circles which are equal to the surfaces of the outer
and inner solids of revolution to be denoted by S, s respectively.

Now the volume of the circumscribed solid together with the cone OLL′ is equal to a cone whose base is S and whose
height is ON [Prop. 40, Cor. 1].

And the volume of the inscribed figure with the cone Oll′ is equal to a cone with base s and height On [Prop. 38].

But S : s = AB2: ab2,
and ON : On = AB : ab.
Therefore the volume of the circumscribed solid together with the cone OLL′ is to the volume of the inscribed solid together
with the cone Oll′ as AB3 is to ab3 [Lemma 5].

Proposition 42.

If lal′ be a segment of a sphere less than a hemisphere and. Oa the radius perpendicular to the base of the segment, the
surface of the segment is equal to a circle whose radius is equal to al.

Let R be a circle whose radius is equal to al. Then the surface of the segment, which we will call S, must, if it be not equal
to R, be either greater or less than R.



I. Suppose, if possible, S > R.

Let lal′ be a segment of a great circle which is less than a semicircle. Join Ol, Ol′, and let similar polygons with 2n equal
sides be circumscribed and inscribed to the sector, as in the previous propositions, but such that

Let the polygons now revolve with the segment about OaA, generating solids of revolution circumscribed and inscribed to the
segment of the sphere.

Then

But the surface of the outer solid is greater than S [Prop. 39].

Therefore the surface of the inner solid is greater than R; which is impossible, by Prop. 37.

II. Suppose, if possible, S < R.

In this case we circumscribe and inscribe polygons such that their ratio is less than R : S; and we arrive at the result that
(surface of outer solid) : (surface of inner solid)

< R : S.
But the surface of the outer solid is greater than R [Prop. 40]. Therefore the surface of the inner solid is greater than S : which
is impossible [Prop. 36].

Hence, since S is neither greater nor less than R,
S = R.

Proposition 43.

Even if the segment of the sphere is greater than a hemisphere, its surface is still equal to a circle whose radius is
equal to al.

For let lal′a′ be a great circle of the sphere, aa′ being the diameter perpendicular to ll′; and let la′I′ be a segment less than a
semicircle.

Then, by Prop. 42, the surface of the segment la′l′ of the sphere is equal to a circle with radius equal to a′l.



Also the surface of the whole sphere is equal to a circle with radius equal to aa′ [Prop. 33].

But aa′2 − a′l2 = al2 and circles are to one another as the squares on their radii.

Therefore the surface of the segment lal′, being the difference between the surfaces of the sphere and of la′l′, is equal to a
circle with radius equal to al.

Proposition 44.

The volume of any sector of a sphere is equal to a cone whose base is equal to the surface of the segment of the sphere
included in the sector, and whose height is equal to the radius of the sphere.

Let R be a cone whose base is equal to the surface of the segment lal′ of a sphere and whose height is equal to the radius of
the sphere; and let S be the volume of the sector Olal′.

Then, if S is not equal to R, it must be either greater or less.

I. Suppose, if possible, that S > R.

Find two straight lines β, γ, of which β is the greater, such that
β : γ > S :R;

and let δ, ε be two arithmetic means between β, γ.

Let lal′ be a segment of a great circle of the sphere. Join Ol, Ol′, and let similar polygons with 2n equal sides be
circumscribed and inscribed to the sector of the circle as before, but such that their sides are in a ratio less than β : δ. [Prop.
4].

Then let the two polygons revolve with the segment about OaA, generating two solids of revolution.

Denoting the volumes of these solids by V, υ respectively, we have
(V + cone OLL') : (υ + cone Oll') = AB3 : ab3 [Prop. 41]

< β3 : δ3

< β : γ, a fortiori*,



< S : R, by hypothesis.
Now (V + cone OLL') > S.
Therefore also (υ + cone Oll') > R
But this is impossible, by Prop. 38, Cor. combined with Props. 42, 43.

Hence S  R.

II. Suppose, if possible, that S < R.

In this case we take β, γ such that
β : γ < R : S,

and the rest of the construction proceeds as before.

We thus obtain the relation
(V + cone OLL') : (υ + cone Oll') < R : S.

Now (υ + cone Oll') < S.
Therefore (V + cone OLL') < R;
which is impossible, by Prop. 40, Cor. 2 combined with Props. 42, 43.

Since then S is neither greater nor less than R,
S = R.

* Though the word used is άξιώματα, the “axioms” are more of the nature of definitions; and in fact Eutocius in his notes speaks of them as such (δρoι).
† Under the term bent line Archimedes includes not only curved lines of continuous curvature, but lines made up of any number of lines which may be either straight or

curved.
* This well-known Archimedean assumption is scarcely, as it stands, a definition of a straight line, though Proclus says [p. 110 ed. Eriedlein] “Archimedes defined

(ώρίσατο) the straight line as the least of those [lines] which have the same extremities. For because, as Euclid’s definition says, ξ ϊσoυ κεîται τoîs ϕ’ αυτ s σημείοιs,
it is in consequence the least of those which have the same extremities.” Proclus had just before [p. 109] explained Euclid’s definition, which, as will be seen, is different
from the ordinary version given in our textbooks; a straight line is not “that which lies evenly between its extreme points,” but “that which ξ ϊσoυ κεîται τoîs ϕ’ αυτ s
σημείοις κ ίται.” The words of Proclus are, “He [Euclid] shows by means of this that the straight line alone [of all lines] occupies a distance (κατ χειν διάστημα) equal to
that between the points on it. For, as far as one of its points is removed from another, so great is the length ( μ γεθοs) of the straight line of which the points are the
extremities; and this is the meaning of τò ξ ϊσoυ κεîται τoîs ϕ’ αυτ s σημείοιs. But, if you take two points on a circumference or any other line, the distance cut off
between them along the line is greater than the interval separating them; and this is the case with every line except the straight line.” It appears then from this that Euclid’s
definition should be understood in a sense very like that of Archimedes’ assumption, and we might perhaps translate as follows, “A straight line is that which extends
equally ( ξ ϊσoυ κεîται) with the points on it,” or, to follow Proclus’ interpretation more closely, “A straight line is that which represents equal extension with [the distances
separating] the points on it.”

* With regard to this assumption compare the Introduction, chapter III. § 2.
* This is of course the geometrical equivalent of saying that, if α, β be two angles each less than a right angle, and α > β, then sin α > sin β.
* Euclid XII. 11. “Cones and cylinders of equal height are to one another as their bases.”
Euclid XII. 14. “Cones and cylinders on equal bases are to one another as their heights.”
† Euclid XII. 13. “If a cylinder be cut by a plane parallel to the opposite planes [the bases], then, as the cylinder is to the cylinder, so will the axis be to the axis.”
‡ Euclid XII. 15. “The bases of equal cones and cylinders are reciprocally proportional to their heights; and those cones and cylinders whose based are reciprocally

proportional to their heights are equal.”
§ Euclid XII. 12. “Similar cones and cylinders are to one another in the triplicate ratio of the diameters of their bases.”
* There is a slight error in Heiberg’s translation “prioris coni” and in the corresponding note, p. 93. The perpendicular is not drawn from the apex of the cone which is

cut by the plane but from the apex of the other.

* That β : γ > β3 : δ3 is assumed by Archimedes. Eutocius proves the property in his commentary as follows.
Take x such that β : δ = δ : x.
Thus β – δ : γ = γ – x :δ

and, since β > δ, β − δ > δ − x.
But, by hypothesis, β – δ = δ – ε.
Therefore δ – ε > δ – x,

or x >ε.
Again, suppose δ : x = x : y,

and, as before, we have δ – x > x – y,
so that, a fortiori, δ – ε > x – y,

Therefore ε – δ > x – y;
and, since x > ε, y > γ.

Now, by hypothesis, β, δ, x, y are in continued proportion;

therefore β3 : δ3 = β : y
< β :δ.

* Cf. note on Prop. 34, p. 42..



ON THE SPHERE AND CYLINDER.

BOOK II.

” ARCHIMEDES to Dositheus greeting.

On a former occasion you asked me to write out the proofs of the problems the enunciations of which I had myself sent to
Conon. In point of fact they depend for the most part on the theorems of which I have already sent you the demonstrations,
namely (1) that the surface of any sphere is four times the greatest circle in the sphere, (2) that the surface of any segment of a
sphere is equal to a circle whose radius is equal to the straight line drawn from the vertex of the segment to the circumference
of its base, (3) that the cylinder whose base is the greatest circle in any sphere and whose height is equal to the diameter of the
sphere is itself in magnitude half as large again as the sphere, while its surface [including the two bases] is half as large again
as the surface of the sphere, and (4) that any solid sector is equal to a cone whose base is the circle which is equal to the
surface of the segment of the sphere included in the sector, and whose height is equal to the radius of the sphere. Such then of
the theorems and problems as depend on these theorems I have written out in the book which I send herewith; those which are
discovered by means of a different sort of investigation, those namely which relate to spirals and the conoids, I will endeavour
to send you soon.

The first of the problems was as follows: Given a sphere, to find a plane area equal to the surface of the sphere.

The solution of this is obvious from the theorems aforesaid. For four times the greatest circle in the sphere is both a plane
area and equal to the surface of the sphere.

The second problem was the following.”

Proposition 1. (Problem.)

Given a cone or a cylinder, to find a sphere equal to the cone or to the cylinder.

If V be the given cone or cylinder, we can make a cylinder equal to . Let this cylinder be the cylinder whose base is the
circle on AB as diameter and whose height is OD.

Now, if we could make another cylinder, equal to the cylinder (OD) but such that its height is equal to the diameter of its
base, the problem would be solved, because this latter cylinder would be equal to  V, and the sphere whose diameter is equal
to the height (or to the diameter of the base) of the same cylinder would then be the sphere required [I. 34, Cor.].

Suppose the problem solved, and let the cylinder (CG) be equal to the cylinder (OD), while EF, the diameter of the base, is
equal to the height CG.

Then, since in equal cylinders the heights and bases are reciprocally proportional,



Suppose MN to be such a line that

Hence AB : EF = EF : MN,
and, combining (1) and (2), we have

AB : MN = EF : OD,

or AB : EF = MN : OD.
Therefore AB : EF = EF : MN = MN : OD,
and EF, MN are two mean proportionals between AB, OD.

The synthesis of the problem is therefore as follows. Take two mean proportionals EF, MN  between AB and OD, and
describe a cylinder whose base is a circle on EF as diameter and whose height CG is equal to EF.

Then, since
AB : EF = EF : MN = MN : OD,

EF2 = AB . MN,

and therefore AB2: EF2 = AB : MN
= EF : OD
= CG : OD;

whence the bases of the two cylinders (OD), (CG) are reciprocally proportional to their heights.

Therefore the cylinders are equal, and it follows that
cylinder (CG) =  V.

The sphere on EF as diameter is therefore the sphere required, being equal to V.

Proposition 2.

If BAB′ be a segment of a sphere, BB′ a diameter of the base of the segment, and O the centre of the sphere, and if AA′
be the diameter of the sphere bisecting BB′ in M, then the volume of the segment is equal to that of a cone whose base is the
same as that of the segment and whose height is h, where

h : AM = OA' + A'M : A'M.

Measure MH along MA equal to h, and MH′ along MA′ equal to h′, where
h' : A'M = OA + AM : AM.

Suppose the three cones constructed which have O, H, H′ for their apices and the base (BB′) of the segment for their
common base. Join AB, A′B.

Let C be a cone whose base is equal to the surface of the segment BAB′ of the sphere, i.e. to a circle with radius equal to
AB [I. 42], and whose height is equal to OA.

Then the cone C is equal to the solid sector OBAB′ [I. 44].

Now, since HM : MA = OA' + A'M : A'M,



dividendo, HA : AM = OA : A'M,
and, alternately, HA : AO = AM : MA',
so that

But OA is equal to the height of the cone C; therefore, since cones are equal if their bases and heights are reciprocally
proportional, it follows that the cone C (or the solid sector OBAB′) is equal to a cone whose base is the circle on BB′ as
diameter and whose height is equal to OH.

And this latter cone is equal to the sum of two others having the same base and with heights OM, MH, i.e. to the solid
rhombus OBHB′.

Hence the sector OBAB′ is equal to the rhombus OBHB′.
Taking away the common part, the cone OBB′,

the segment BAB' = the cone HBB'.
Similarly, by the same method, we can prove that

the segment BA'B' = the cone H'BB'.
Alternative proof of the latter property.

Suppose D to be a cone whose base is equal to the surface of the whole sphere and whose height is equal to OA.

Thus D is equal to the volume of the sphere. [I. 33, 34]

Now, since OA′ + A′M : A′M = HM : MA,
dividendo and alternando, as before,

OA : AH = A'M : MA.

Again, since H'M : MA' = OA + AM : AM,
H'A' : OA = A'M : MA

= OA : AH, from above.
Componendo,

Alternately,
and, componendo,

whence

Next, since

(H'O + OH)2 : H'O . OH = (A'M + MA)2 : A'M . MA,

whence, by means of (3),
HH'2: HH' . OA = AA'2 : A'M . MA,

or HH' : OA = AA'2 : BM2.
Now the cone D, which is equal to the sphere, has for its base a circle whose radius is equal to AA′, and for its height a line
equal to OA.

Hence this cone D is equal to a cone whose base is the circle on BB′ as diameter and whose height is equal to HH′;
therefore the cone D = the rhombus HBH'B',
or the rhombus HBH'B' = the sphere.
But the segment BAB' = the cone HBB';



therefore the remaining segment BA′B′ = the cone H′BB′.

COR. The segment BAB′ is to a cone with the same base and equal height in the ratio of OA′ + A′M to A′M.

Proposition 3. (Problem.)

To cut a given sphere by a plane so that the surfaces of the segments may have to one another a given ratio.

Suppose the problem solved. Let AA′ be a diameter of a great circle of the sphere, and suppose that a plane perpendicular
to AA′ cuts the plane of the great circle in the straight line BB′, and AA′ in M, and that it divides the sphere so that the surface of
the segment BA′B′ has to the surface of the segment BA′B′ the given ratio.

Now these surfaces are respectively equal to circles with radii equal to AB, A′B [I. 42, 43].

Hence the ratio AB2 : A′B2 is equal to the given ratio, i.e. AM is to MA′ in the given ratio.

Accordingly the synthesis proceeds as follows.

If H : K be the given ratio, divide AA′ in M so that
AM : MA' = H .K.

Then AM : MA' = AB2: A'B2

= (circle with radius AB) : (circle with radius A'B)
= (surface of segment BAB') : (surface of segment BA'B').

Thus the ratio of the surfaces of the segments is equal to the ratio H : K.

Proposition 4. (Problem.)

To cut a given sphere by a plane so that the volumes of the segments are to one another in a given ratio.

Suppose the problem solved, and let the required plane cut the great circle ABA′ at right angles in the line BB′. Let AA′ be
that diameter of the great circle which bisects BB′ at right angles (in M), and let O be the centre of the sphere.

Take H on OA produced, and H′ on OA′ produced, such that

and

Join BH, B′H, BH′, B′H′.



Then the cones HBB′, H′BB′ are respectively equal to the segments BAB′, BA′B′ of the sphere [Prop. 2].

Hence the ratio of the cones, and therefore of their altitudes, is given, i.e.

We have now three equations (1), (2), (3), in which there appear three as yet undetermined points M, H, H′; and it is first
necessary to find, by means of them, another equation in which only one of these points (M) appears, i.e. we have, so to speak,
to eliminate H, H′.

Now, from (3), it is clear that HH′ : H′M is also a given ratio; and Archimedes’ method of elimination is, first, to find
values for each of the ratios A′H′ : H′M and HH′ : H′A′ which are alike independent of H, H′, and then, secondly, to equate the
ratio compounded of these · two ratios to the known value of the ratio HH′ : H′M.

(a) To find such a value for A′H′ : H′M.

It is at once clear from equation (2) above that

(b) To find such a value for HH′ : A′H′. From (1) we derive

and, from (2),

Thus HA : AO = OA' : A'H',
whence OH : OA' = OH': A'H',
or OH : OH' = OA' : A'H'.

It follows that
HH' : OH' = OH' : A'H',

or HH' . H'A' = OH'.2

Therefore

(c) To express the ratios A′H′ : H′M and HH′ : H′M more simply we make the following construction. Produce OA to D so
that OA = AD. (D will lie beyond H, for A′M > MA, and therefore, by (5), OA > AH.)

Then

Now divide AD at E so that

Thus, using equations (8), (7) and the value of HH′ : H′A′ above found, we have

But AD : DE = (DM : DE). (AD : DM).

Therefore
And D is given, since AD = OA. Also AD : DE (being equal to HH′: H′M) is a given ratio. Therefore DE is given.



Hence the problem reduces itself to the problem of dividing A′D into two parts at M so that
MD : (a given length) = (a given area) : A'M2.

Archimedes adds: “If the problem is propounded in this general form, it requires a διoρισμóς [i.e. it is necessary to
investigate the limits of possibility], but, if there be added the conditions subsisting in the present case, it does not require a
διoρισμóς.”

In the present case the problem is:

Given a straight line A′A produced to D so that A′ A 2 = 2 AD, and given a point E on AD, to cut AA′ in a point M so that
AA'2 : A'M2 = MD : DE.

“And the analysis and synthesis of both problems will be given at the end*.”

The synthesis of the main problem will be as follows. Let R : S be the given ratio, R being less than S. AA′ being a diameter
of a great circle, and O the centre, produce OA to D so that OA = AD, and divide AD in E so that

AE : ED = R : S.

Then cut AA′ in M so that
MD : DE = AA'2 : A'M2.

Through M erect a plane perpendicular to AA′′; this plane will then divide the sphere into segments which will be to one
another as R to S.

Take H on A′A produced, and H′ on AA′ produced, so that

We have then to show that
HM : MH' = R : S, or AE : ED.

(a) We first find the value of HH′ : H′A′ as follows.

As was shown in the analysis (b),
HH' . H'A' = OH'2,

or

(β) Next we have

Therefore

whence

Note. The solution of the subsidiary problem to which the original problem of Prop. 4 is reduced, and of which
Archimedes promises a discussion, is given in a highly interesting and important note by Eutocius, who introduces the subject
with the following explanation.

“He [Archimedes] promised to give a solution of this problem at the end, but we do not find the promise kept in any of the
copies. Hence we find that Dionysodorus too failed to light upon the promised discussion and, being unable to grapple with the
omitted lemma, approached the original problem in a different way, which I shall describe later, Diocles also expressed in his



work περì πνρίων the opinion that Archimedes made the promise but did not perform it, and tried to supply the omission
himself. His attempt I shall also give in its order. It will however be seen to have no relation to the omitted discussion but to
give, like Dionysodorus, a construction arrived at by a different method of proof. On the other hand, as the result of unremitting
and extensive research, I found in a certain old book some theorems discussed which, although the reverse of clear owing to
errors and in many ways faulty as regards the figures, nevertheless gave the substance of what I sought, and moreover to some
extent kept to the Doric dialect affected by Archimedes, while they retained the names familiar in old usage, the parabola being
called a section of a right-angled cone, and the hyperbola a section of an obtuse-angled cone; whence I was led to consider
whether these theorems might not in fact be what he promised he would give at the end. For this reason I paid them the closer
attention, and, after finding great difficulty with the actual text owing to the multitude of the mistakes above referred to, I made
out the sense gradually and now proceed to set it out, as well as I can, in more familiar and clearer language. And first the
theorem will be treated generally, in order that what Archimedes says about the limits of possibility may be made clear; after
which there will follow the special application to the conditions stated in his analysis of the problem.”

The investigation which follows may be thus reproduced. The general problem is:

Given two straight lines AB, AC and an area D, to divide AB at M so that
AM : AC = D : MB2.

Analysis.
Suppose M found, and suppose AC placed at right angles to AB. Join CM and produce it. Draw EBN through B parallel to

AC meeting CM in N, and through C draw CHE parallel to AB meeting EBN in E. Complete the parallelogram CENF, and
through M draw PMH parallel to AC meeting FN in P.

Measure EL alone: EN so that
CE . EL (or AB . EL) = D.

Then, by hypothesis,
AM : AC = CE . EL : MB2.

And
AM : AC = CE : EN,

by similar triangle
= CE . EL : EL . EN.

It follows that PN2 = MB2 = EL. EN.

Hence, if a parabola be described with vertex E, axis EN, and parameter equal to EL, it will pass through P; and it will be
given in position, since EL is given.

Therefore P lies on a given parabola.

Next, since the rectangles FH, AE are equal,
FP. PH = AB . BE.

Hence, if a rectangular hyperbola be described with CE, CF, as asymptotes and passing through B, it will pass through P.
And the hyperbola is given in position.

Therefore P lies on a given hypérbola.

Thus P is determined as the intersection of the parabola and hyperbola. And since P is thus given, M is also given.



δ ι o ρ ι σ μ ό ς.

Now, since AM : AC = D : MB2,
AM . MB2 = AC . D.

But AC.D is given, and it will be proved later that the maximum value of AM. MB2 is that which it assumes when BM =
2AM.

Hence it is a necessary condition of the possibility of a solution that AC.D must not be greater than (  or 
.

Synthesis.
If O be such a point on AB that BO = 2AO, we have seen that, in order that the solution may be possible,

AC . D  AO . OB2

Thus AC. D is either equal to, or less than, AO.OB2.

(1) If AC.D = AO. OB2 then the point O itself solves the problem.

(2) Let AC.D be less than AO. 0B2.

Place AC at right angles to AB. Join CO and produce it to R. Draw EBR through B parallel to AC meeting CO in R and
through C draw CE parallel to AB meeting EBR in E. Complete the parallelogram CERF and through O draw QOK parallel to
AC meeting FR in Q and CE in K.

Then, since
AC .D < AO . OB2,

measure RQ′ along RQ so that
AC . D = AO . Q'R2,

or AO : AC = D : Q'R2.

Measure EL along ER so that
D = CE . EL (or AB . EL).

Now, since AO : AC = D : Q'R2, by hypothesis,
= CE . EL : Q'R2,

and AO : AC = CE : ER, by similar triangles,
= CE . EL : EL . ER,

it follows that
Q'R2 = EL . ER.

Describe a parabola with vertex E, axis ER and parameter equal to EL. This parabola will then pass through Q′

Again, rect.FK = rect. AE,
or FQ . QK = AB . BE ;
and, if we describe a rectangular hyperbola with asymptotes CE, CF and passing through B, it will also pass through Q.

Let the parabola and hyperbola intersect at P, and through P draw PMH parallel to iC meeting AB in M and CE in H, and
GPN parallel to AB meeting CF in G and ER in N.



Then shall M be the required point of division.
Since PG . PH = AB . BE,

rect. GM = rect. ME,

and therefore CMN is a straight line.

Thus
Again, by the property of the parabola,

PN2 = EL . EN,

or

From (1) and (2)
AM : EL = AB . BE : MB2,

or AM . AB : AB . EL = AB . AC : MB2.
Alternately,

AM . AB : AB . AG = AB . EL : MB2,

or AM : AC = D : MB2.

Proof of δ ι o ρ ι σ μ ό ς.

It remains to be proved that, if AB be divided at O so that BO = 2AO, then AO.OB2 is the maximum value of AM.MB2,
or AO . OB2 > AM . MB2,
where M is any point on AB other than O.

Suppose that AO : AC = OE . EL' : OB2,
so that AO. OB2 = CE . EL'. AC.
Join CO and produce it to N; draw EBN through B parallel to AC and complete the parallelogram CENF.

Through O draw POH parallel to AC meeting FN in P and CE in H.

With vertex E axis EN and parameter EL′ describe a parabola. This will pass through P, as shown in the analysis above,
and beyond P will meet the diameter CF of the parabola in some point.



Next draw a rectangular hyperbola with asymptotes CE, CF and passing through B. This hyperbola will also pass through
P, as shown in the analysis.

Produce NE to T so that TE = EN. Join TP meeting CE in Y, and produce it to meet CF in W. Thus TP will touch the
parabola at P.

Then, since BO = 2AO,

TP = 2PW.

And  TP = 2PY.

Therefore PW = 2PY.
Since, then, WY between the asymptotes is bisected at P, the point where it meets the hyperbola,

WY is a tangent to the hyperbola.

Hence the hyperbola and parabola, having a common tangent at P, touch one another at P.

Now take any point M on AB, and through M draw QMK parallel to AC meeting the hyperbola in Q and CE in K. Lastly,
draw GqQR through Q parallel to AB meeting CF in G, the parabola in q, and EN in R.

Then, since, by the property of the hyperbola, the rectangles GK, AE are equal, CMR is a straight line.

By the property of the parabola,
qR2 = EL' . ER,

so that QR2 < EL' . ER.
Suppose QR2 = EL . ER,



and we have

or AM .MB2 = CE . EL . AC.
Therefore AM . MB2 < CE. EL' . AC

< AO . OB2.

If AC.D < AO.OB2 there are two solutions because there will be two points of intersection between the parabola and the
hyperbola.

For, if we draw with vertex E and axis EN a parabola whose parameter is equal to EL, the parabola will pass through the
point Q (see the last figure); and, since the parabola meets the diameter CF beyond Q, it must meet the hyperbola again (which
has CF for its asymptote).

[If we put AB = a, BM = x, AC = c and D = b2 the proportion
AM : AC = D : MB2

is seen to be equivalent to the equation
x2 (a – x) = b2c,

being a cubic equation with the term containing x omitted.

Now suppose EN, EC to be axes of coordinates, EN being the axis of y.

Then the parabola used in the above solution is the parabola

and the rectangular hyperbola is
y (a – x) = ac.

Thus the solution of the cubic equation and the conditions under which there are no positive solutions, or one, or two positive
solutions are obtained by the use of the two conics.]

[For the sake of completeness, and for their intrinsic interest, the solutions of the original problem in Prop. 4 given by
Dionysodorus and Diodes are here appended.

Dionysodorus’ solution.
Let A A′ be a diameter of the given sphere. It is required to find a plane cutting A A′ at right angles (in a point M suppose) so

that the segments into which the sphere is divided are in a given ratio, as CD : DE.

Produce A′A to F so that AF = OA, where O is the centre of the sphere.



Draw AH perpendicular to A A′’ and of such length that
FA : AH = CE : ED,

and produce AH to K so that

With vertex F axis FA and parameter equal to AH describe a parabola. This will pass through K by the equation (α).

Draw A′ K′ parallel to AK and meeting the parabola in K′; and with A′F, A′K′ as asymptotes describe a rectangular
hyperbola passing through H. This hyperbola will meet the parabola at some point, as P between K and K′.

Draw PM perpendicular to A A′ meeting the great circle in B, B′ and from H, P draw HL, PR both parallel to AA′ and
meeting A′ K′ in L, R respectively.

Then, by the property of the hyperbola,
PR . PM = AH . HL,

i.e. PM . MA' = HA . AA',
or PM : AH = AA' : A'M,
and PM2 : AH2 = AA'2 : A'M2.

Also, by the property of the parabola,
PM2 = FM . AH,

i.e. FM : PM = PM : AH,
or FM : AH = PM2 : AH2

= AA'2 : A'M2, from above.

Thus, since circles are to one another as the squares of their radii, the cone whose base is the circle with A′ M as radius
and whose height is equal to FM, and the cone whose base is the circle with A A′ as radius and whose height is equal to AH
have their bases and heights reciprocally proportional.

Hence the cones are equal; i.e., if we denote the first cone by the symbol c (A′ M), FM and so on,
c (A'M), FM = c (AA'), AH.

Now c (AA'), FA : c (AA'), AH = FA : AH
= CE : ED, by construction.

Therefore

But

(2) c(A′ M), FM can be proved equal to the segment of the sphere whose vertex is A′ and height A′ M.

For take G on A A′ produced such that

Then the cone GBB′ is equal to the segment A′ BB′ [Prop. 2].
And

Therefore
(circle with rad. BM) : (circle with rad. A'M)

= FM : MG,



so that

We have therefore, from the equation (β) above,
(the sphere) : (segmt. A'BB') = GE : ED,

whence (segmt. ABB' ) : (segmt. A'BB') = CD : DE.

Diodes’ solution.
Diodes starts, like Archimedes, from the property, proved in Prop. 2, that, if the plane of section cut a diameter A A′ of the

sphere at right angles in M and if H, H′ be taken on OA, OA′ produced respectively so that
OA' + A'M : A'M = HM : MA,

OA + AM : AM = H'M : MA',
then the cones HBB′ H′ BB′ are respectively equal to the segments ABB′, A′BB′ .

Then, drawing the inference that

he proceeds to state the problem in the following form, slightly generalising it by the substitution of any given straight line for
OA or OA′:

Given a straight line AA′, its extremities A, A′, α ratio C: D, and another straight line as AK, to divide A A′ at M and to
find two points H, H′ on A′ A and A A′ produced respectively so that the following relations may hold simultaneously

Analysis.
Suppose the problem solved and the points M, H, H′ all found.

Place AK at right angles to A A′ and draw A′ K′ parallel and equal to AK. Join KM, K′ M, and produce them to meet K′ A′,
KA respectively in E, F. Join KK′, draw EG through E parallel to A′ A meeting KF in G, and through M draw QMN parallel to
AK meetine EG in Q nnd K′ in N.

Now

whence HA = FA.
Similarly H′A′ = A′E.

Next,

Therefore



(FA + AM).(EA′ + A′M) = (KA + AM).(K′A′ + A′M).
Take AR along AH and A′ R′ along A′ H′ such that

AR = A′R′ = AK.
Then, since FA + AM = HM, EA′ + A′M = MH′, we have

(Thus, if R falls between A and H, R′ falls on the side of H′ remote from A′ and vice versa.)

Now

Measure MV along MN so that MV =A′ M. Join A′ V and product it both ways. Draw RP, R′ P′ perpendicular to R R′ meeting A′
V produced in P,P′ respectively. Then, the angle MAV being half a right angle, PP′ is given in position, and, since R,R′ are
given, so are P,P′.

And, by paralles,
P′V : PV = R′M : MR.

Therefore PV.P′V : PV2 = RM . MR′ : RM2.

But PV2 = 2RM2.

Therefore PV.P′V = 2RM.MR′.
And it was shown that

RM.MR′ : MH′2 = C : D.

Hence PV.P′ : MH′2 = 2C : D.
But MH′ = A′M + A′E = VM + MQ = QV.

Therefore QV3 : PV.P′V = D : 2C, a given ratio.
Thus, if we take a line p such that

D : 2C = p : PP′*,
and if we describe an ellipse with PP′ as a diameter and p as the corresponding parameter [= DD′/PP′ in the ordinary notation
of geometrical conics], and such that the ordinates to PP′ are inclined to it at an angle equal to half a right angle, i.e. are
parallel to QV or AK, then the ellipse will pass through Q.

Hence Q lies on an ellipse given in position.

Again, since EK is a diagonal of the parallelogram GK′,



GQ.QN = AA′ .A′K′.
If therefore a rectangular hyperbola be described with KG, KK′ as asymptotes and passing through A′, it will also pass

through Q.

Hence Q lies on a given rectangular hyperbola.

Thus Q is determined as the intersection of a given ellipse and a given hyperbola, and is therefore given. Thus M is given,
and H, H′ can at once be found.

Synthesis.
Place AA′, AK at right angles, draw A′ K′ parallel and equal to AK, and join KK′.

Make AR (measured along A′ A produced) and A′ R′ (measured along AA′ produced) each equal to AK, and through R R′
draw perpendiculars to RR′.

Then through A′ draw PP′ making an angle (AA′ P) with A A′ equal to half a right angle and meeting the perpendiculars just
drawn in P, P′ respectively.

Take a length p such that
D : 2 C = p : PP′*,

and with PP′ as diameter and p as the corresponding parameter describe an ellipse such that the ordinates to PP′ are inclined to
it at an angle equal to AA′P, i.e. are parallel to AK.

With asymptotes KA, KK′ draw a rectangular hyperbola passing through A′.

Let the hyperbola and ellipse meet in Q, and from Q draw QMVN perpendicular to AA′ meeting AA′ in M, PP′ in V and KK′
in N. Also draw GQE parallel to AA′ meeting AK, A′ K′ respectively in G, E.

Produce KA, K′M to meet in F.

Then, from the property of the hyperbola,
GQ.QN=AA′.A′K′,

and, since these rectangles are equal, KME is a straight line.

Measure AH along AR equal to AF, and A′H′ along A′R′ equal to A′E.

From the property of the ellipse,

And, by parallels,
P V :P′ V = R M : R′M,

or PV . P′V : P′V2 = RM . MR′ : R′M2,
while P′ V2 = 2R′M2, since the angle RA′P is halp a right angle.

Therefore PV . P′V = 2RM.MR′,
whence QV2 : 2RM. MR′ = D : 2C.

But QV = EA′ + A′M = MH′.

Therefore RM. MR′ : MH′2 = C : D.

Again, by similar triangles,

Therefore

(FA +AM) .(EA′ + A′M) = (KA + AM) . (K′A′ + A′M)
or HM. MH′ = RM. MR′.



It follows that
HM. MH′ : MH′2 = C:D,

or

Also

and

Hence the points M, H, H′ satisfy the three given relations.]

Proposition 5. (Problem.)

To construct a segment of a sphere similar to one segment and equal in volume to another.
Let ABB′ be one segment whose vertex is A and whose base is the circle on BB′ as diameter; and let DEF be another

segment whose vertex is D and whose base is the circle on EF as diameter. Let AA′ , DD′ be diameters of the great circles
passing through BB′, EF respectively, and let O, C be the respective centres of the spheres.

Suppose it required to draw a segment similar to DEF and equal in volume to ABB′.

Analysis. Suppose the problem solved, and let def be the required segment, d being the vertex and ef the diameter of the
base. Let dd′ be the diameter of the sphere which bisects ef at right angles, c the centre of the sphere.

Let M, G, g be the points where BB′, EF, ef are bisected at right angles by AA′ DD′, dd′ respectively, and produce OA, CD,
cd respectively to H, K, k, so that

and suppose cones formed with vertices H, K, k and with the same bases as the respective segments. The cones will then be
equal to the segments respectively [Prop. 2].

Therefore, by hypothesis,
the cone HBB′ = the cone kef.

Hence
(circle on diameter BB′) : (circle on diameter ef) = kg : HM
so that



But, since the segments DEF, def are similar, so are thé cones KEF, kef.
Therefore KG : E F−kg: ef
And the ratio KG : EF is given. Therefore the ratio kg : ef is given.

Suppose a length R taken such that

Thus R is given.

Again, since kg : HM = BB′2: ef2 = ef:R by (1) and (2), suppose a length S taken such that
ef2 = BB′.S,

or BB′2: ef2 = BB′:S.

Thus BB′ : ef = ef : S = S : R,
and ef, S are two mean proportionals in continued proportion between BB′, R.

Synthesis. Let ABB′, DEF be great circles, AA′, DD′ the diameters bisecting BB′, EF at right angles in M, G respectively,
and O, G the centres.

Take H, K in the same way as before, and construct the cones HBB′ , KEF, which are therefore equal to the respective
segments ABB′, DEF.

Let R be a straight line such that
KG : EF = HM : R,

and between BB′, R take two mean proportionals ef, S.

On ef as base describe a segment of a circle with vertex d and similar to the segment of a circle DEF. Complete the circle,
and let dd′ be the diameter through d and c the centre. Conceive a sphere constructed of which def is a great circle, and through
ef draw a plane at right angles to dd′.

Then shall def be the required segment of a sphere.

For the segments DEF, def of the spheres are similar, like the circular segments DEF, def.
Produce cd to k so that

cd′ + d′g : d′g = kg : gd.
The cones KEF, kef are then similar.

Therefore kg : ef= KG : EF = HM : U,
whence kg : HM = ef : R.

But, since BB′, ef, S, R are in continued proportion,

Thus the bases of the cones HBB′, kef are reciprocally proportional to their heights. The cones are therefore equal, and def
is the segment required, being equal in volume to the cone kef  [Prop. 2]

Proposition 6. (Problem.)
Given two segments of spheres, to find a third segment of a sphere similar to one of the given segments and having its

surface equal to that of the other.
Let ABB′ be the segment to whose surface the surface of the required segment is to be equal, ABA′B′ the great circle whose

plane cuts the plane of the base of the segment ABB′ at right angles in BB′. Let AA′ be the diameter which bisects BB′ at right
angles.

Let DEF be the segment to which the required segment is to be similar, DED′F the great circle cutting the base of the



segment at right angles in EF. Let DD’ be the diameter bisecting EF at right angles in G.

Suppose the problem solved, def being a segment similar to DEF and having its surface equal to that of ABB′; and complete
the figure for def as for DEF corresponding points being denoted by small and capital letters respectively.

Join AB, DF, df.
Now, since the surfaces of the segments def ABB′ are equal, so are the circles on df, AB as

diameters; [I. 42, 43]
that is, df = AB.

From the similarity of the segments DEF, def we obtain
d′d : dg + D′D : DG,

and dg : df = DG : DF;
whence d′d : df = D′D : DF,
or d′d : AB = D′D : DF.
But AB, D′D, DF are all given;

therefore d′d is given.

Accordingly the synthesis is as follows.

Take d′d such that

Describe a circle on d′d as diameter, and conceive a sphere constructed of which this circle is a great circle.

Divide d′d at g so that
d′g : gd = D′G : GD,

and draw through g a plane perpendicular to d′d cutting off the segment def of the sphere and intersecting the plane of the great
circle in ef. The segments def, DEF are thus similar,
and dg : d f= DG : DF.

But from above, componendo,
d′d : dg = D′D : DG.

Therefore, ex aequali, d′d : df= D′D : DF,
whence, by (1), df = AB.

Therefore the segment def has its surface equal to the surface of the segment ABB′ [I. 42, 43], while it is also similar to the
segment DEF.



Proposition 7. (Problem.)

From a given sphere to cut off a segment by a plane so that the segment may have a given ratio to the cone which has
the same base as the segment and equal height

Let AA′ be the diameter of a great circle of the sphere. It is required to draw a plane at right angles to AA′ cutting off a
segment, as ABB′ such that the segment ABB′ has to the cone ABB′ a given ratio.

Analysis.
Suppose the problem solved, and let the plane of section cut the plane of the great circle in BB′, and the diameter AA′ in M.

Let O be the centre of the sphere.

Produce OA to H so that

Thus the cone HBB′ is equal to the segment ABB′. [Prop. 2]

Therefore the given ratio must be equal to the ratio of the cone HBB′ to the cone ABB′, i.e. to the ratio HM: MA.

Hence the ratio OA′ + A′M : A′M is given; and therefore A′M is given.

δ ι ο ρ ι σ μ ó σ.

Now OA′ :A′M < OA′ : A′A,

so that

Thus, in order that a solution may he possible, it is a necessary condition that the given ratio must be greater than  3 :
2.

The synthesis proceeds thus.

Let A A′ be a diameter of a great circle of the sphere, O the centre.

Take a line DE, and a point F on it, such that DE : EF is equal to the given ratio, being greater than 3 : 2.

Now, since OA′ + A′A : A′A = 3:2,
DE : EF > OA′ + A′A : A′A,

so that DF : FE > OA′ : A′A.
Hence a point M can be found on AA′ such that

Through M draw a plane at right angles to AA′ intersecting the plane of the great circle in BB′ and cutting off from the
sphere the segment ABB′.

As before, take H on OA produced such that
OA′ + A′M : A′M = HM : MA.

Therefore HM: MA = DE: EF by means of (2).

It follows that the cone HBB′ or the segment ABB′, is to the cone ABB′ in the given ratio DE: EF.



Propostion 8.

If a sphere be cut by a plane not passing through the centre into two segments  A′BB′ , ABB′, of which A′BB′ is the
greater, then the ratio

Let the plane of section cut a great circle A′BAB′ at right angles in BB′ and let A A′ be the diameter bisecting BB′ at right
angles in M.

Let O be the centre of the sphere.

Join A′B, AB.

As usual, take H on OA produced, and H′ on OA′ produced, so that

and conceive cones drawn each with the same base as the two segments and with apices H, H′ respectively. The cones are then
respectively equal to the segments [Prop. 2], and they are in the ratio of their heights HM, H′M.

Also

We have therefore to prove
(a) that H′ M : MH < A′M2 : MA2

(b) that H′ M : MH < A′M  : MA

(a) From (2) above,

Since A′M > AM, H′A > OA′; therefore, if we take K on H′A′ so that OA′ = A′K, K will fall between H′ and A′.

And, by (1), A′M : AM = KM : MH.

Thus KM :MH = H′A′ : A′K, since A′K = OA′,
> H′M : MK.

Therefore H′M . MH < KM2.

It follows that
H′M. M H : MH2 < KM2 : MH2,



or

(b) Since OA′ = OA,
A′M . MA < A′O . OA,

or

Therefore

Take a point N on A′A such that
A′N2 = H′A′ . A′K.

Thus

Also H′A′ : A′N = A′N: A′K,
and, componendo

H′N: A′N= N K : A′K,

whence A′N2: A′K2 = H′N2: N K2.

Therefore, by (3),
H′A′: A′K = H′N2: NK2.

Now H′M: MK < H′N : NK.
Therefore

Hence

It follows that

[The text of Archimedes adds an alternative proof of this proposition, which is here omitted because it is in fact neither
clearer nor shorter than the above.]

Proposition 9.

Of all segments of spheres which have equal surfaces the hemisphere is the greatest in volume.
Let ABA′B′ be a great circle of a sphere, AA′ being a diameter, and O the centre. Let the sphere be cut by a plane, not

passing through O, perpendicular to AA′ (at M), and intersecting the plane of the great circle in BB′. The segment ABB′ may then
be either less than a hemisphere as in Fig. 1, or greater than a hemisphere as in Fig. 2.

Let DED′E′ be a great circle of another sphere, DD′ being a diameter and C the centre. Let the sphere be cut by a plane
through C perpendicular to DD′ and intersecting the plane of the great circle in the diameter EE′.

Suppose the surfaces of the segment ABB′ and of the hemisphere DEE′ to be equal.



Since the surfaces are equal, AB = DE. [I. 42, 43]

Now, in Fig. 1, AB2 < 2AM2 and < 2AO2.
and, in Fig. 2, AB2 < 2AM2 and > 2AO2.

Hence, if R be taken on AA′ such that
AR2 = AB2,

R will fall between O and M.

Also, since AB2 = DE2, AR = CD.

Produce OA′ to K so that OA′ = A′K, and produce A′A to H so that
A′K : A′M = HA : AM,

or, componendo,

Thus the cone HBB′ is equal to the segment ABB′.
[Prop. 2]

Again, produce CD to F so that CD = DF and the cone FEE′ will be equal to the hemisphere
DEE′. [Prop. 2]

Now AR.RA′ < AM . MA′,
and AR2 = AB2 = AM.AA′ = AM. A′K.

Hence
AR . RA′ + RA* < AM. MA′ + AM . A′K,

or

Therefore AA′ : A′M > HM : AR,

or AB2: BM2 > HM : AR,
i.e.

Thus, since AR = CD or CE,

(circle on diam. EE′) : (circle on diam. BB′) >; HM: CF.

It follows that
(the cone FEE′) > (the cone HBB′)

and therefore the hemisphere DEE′ is greater in volume than the segment ABB′

QV2 : PV . P ′ V = PP ′ : p,

whereas the two latter terms should be reversed, the correct property of the ellipse being



QV2 : PV . P′ V = p : PP′.  [Apollonius I. 21]

The mistake would appear to have originated as far back as Eutocius, but I think that Eutocius is more likely to have made the slip than Diodes himself, because any
intelligent mathematician would be more likely to make such a slip in writing out another man’s work than to overlook it if made by another.

* See the note following this proposition.
* Here too the Greek text repeat the same error as that noted on p.77.
* This is expressed in Archimedes’ phrase by saying that the greater segment has to the lasser a ratio “less than the duplicate (διπλáσιον) of that which the surface of

the greater segment has to the surface of the lesser, but greater than the sesquialterate (ήμιóλιoν [of the ratio.]”
* There is a mistake in the Greek text here which seems to have escaped the notice of all the editors up to the present. The words are àν þα πoιήσωμεν, ώτήν Δ

πρòs τήν διπλασíαν τ  Γ, oüτωs τήν Tr πρòs λλην τινà ώs τήν Φ, i, e. (with the lettering above) “ If we take a length p such that D :2C = PP′: p.” This cannot be right,
because we should then have



MEASUREMENT OF A CIRCLE.

Proposition 1.

The area of any circle is equal to a right-angled triangle in which one of the sides about the right angle is equal to the
radius, and the other to the circumference, of the circle.

Let ABCD be the given circle, K the triangle described.

Then, if the circle is not equal to K, it must be either greater or less.

I. If possible, let the circle be greater than K.

Inscribe a square ABCD, bisect the arcs AB, BC, CD, DA then bisect (if necessary) the halves, and so on, until the sides of
the inscribed polygon whose angular points are the points of division subtend segments whose sum is less than the excess of the
area of the circle over K.

Thus the area of the polygon is greater than K.

Let AE be any side of it, and ON the perpendicular on AE from the centre O.

Then ON is less than the radius of the circle and therefore less than one of the sides about the right angle in K. Also the
perimeter of the polygon is less than the circumference of the circle, i.e. less than the other side about the right angle in K.

Therefore the area of the polygon is less than K; which is inconsistent with the hypothesis.

Thus the area of the circle is not greater than K.

II. If possible, let the circle be less than K.

Circumscribe a square, and let two adjacent sides, touching the circle in E, H, meet in T. Bisect the arcs between adjacent
points of contact and draw the tangents at the points of bisection. Let A be the middle point of the arc EH, and FAG the tangent
at A.

Then the angle TAG is a right angle.

Therefore

It follows that the triangle FTG is greater than half the area TEAR;

Similarly, if the arc AH be bisected and the tangent at the point of bisection be drawn, it will cut off from the area GAH
more than one-half.

Thus, by continuiug the process, we shall ultimately arrive at a circumscribed polygon such that the spaces intercepted
between it and the circle are together less than the excess of K over the area of the circle.

Thus the area of the polygon will be less than K.

Now, since the perpendicular from O on any side of the polygon is equal to the radius of the circle, while the perimeter of
the polygon is greater than the circumference of the circle, it follows that the area of the polygon is greater than the triangle K;
which is impossible.



Therefore the area of the circle is not less than K.

Since then the area of the circle is neither greater nor less than K, it is equal to it.

Proposition 2.

The area of a circle is to the square on its diameter as 11 to 14.

[The text of this proposition is not satisfactory, and Archimedes cannot have placed it before Proposition 3, as the
approximation depends upon the result of that proposition,]

Proposition 3.

The ratio of the circumference of any circle to its diameter is less than 3  but greater than .

[In view of the interesting questions arising out of the arithmetical content of this proposition of Archimedes, it is
necessary, in reproducing it, to distinguish carefully the actual steps set out in the text as we have it from the intermediate steps
(mostly supplied by Eutocius) which it is convenient to put in for the purpose of making the proof easier to follow.
Accordingly all the steps not actually appearing in the text have been enclosed in square brackets, in order that it may be
clearly seen how far Archimedes omits actual calculations and only gives results. It will be observed that he gives two
fractional approximations to  (one being less and the other greater than the real value) without any explanation as to how he
arrived at them; and in like manner approximations to the square roots of several large numbers which are not complete
squares are merely stated. These various approximations and the machinery of Greek arithmetic in general will be found
discussed in the Introduction, Chapter IV.]

I. Let AB be the diameter of any circle, O its centre, AC the tangent at A; and let the angle AOC be one-third of a right
angle.

Then

and

First, draw OD bisecting the angle AOC and meeting AC in D.

Now CO:OA = CD: DA, [Eucl. VI. 3 ]
so that [CO + OA : OA = CA : DA, or]

CO + OA : CA = OA : AD.

Therefore [by (1) and (2)]

Hence

so that



Secondly, let OE bisect the angle A OD, meeting AD in E.

[Then DO : 0 A =D E : EA,

so that DO + OA : DA = OA : AE.]
Therefore

[It follows that

Thus

Thirdly, let OF bisect the angle AOE and meet AE in F.

We thus obtain the result [corresponding to (3) and (5) above] that

[Therefore

Thus

Fourthly, let OG bisect the angle AOF meeting AF in G.

We have then

Now the angle AOC, which is one-third of a right angle, has been bisected four times, and it follows that
∠AOG =  (a right angle).

Make the angle AOH on the other side of OA equal to the angle AOC, and let GA produced meet OH in H.

Then < GOH =  (a right angle).

Thus GH is one side of a regular polygon of 96 sides circumscribed to the given circle.



And, since OA : AG > 4673  : 153,

while AB = 20 A, OH = 2 AG,

it follows that

AB : (perimeter of polygon of 96 sides) 

But

Therefore the circumference of the circle (being less than the perimeter of the polygon) is a fortiori less than 3  times the
diameter AB.

II. Next let AB be the diameter of a circle, and let AC meeting the circle in C, make the angle CAB equal to one-third of a
right angle. Join BC.

Then AC : CB [=  : 1] < 1351 : 780.

First let AD bisect the angle BAC and meet BC in d and the circle in D. Join BD.

Then

and the angles at D, C are both right angles.

It follows that the triangles ADB [ACd], BDd are similar.

Therefore

or BA + AG : BC= AD : DB.

[But AG : CB < 1351 : 780, from above,
while

Therefore

[Hence



Thus

Secondly let AE bisect the angle BAD, meeting the circle in E; and let BE be joined.

Then we prove, in the same way as before, that

[Hence

Therefore
Thirdly let AF bisect the angle BAE, meeting the circle in F.

Thus

[It follows that

Therefore

Fourthly, let the angle BAF be bisected by AG meeting the circle in G.

Then

[And 

Therefore AB : BG < 2017  : 66,
whence
[Now the angle BAG which is the result of the fourth bisection of the angle BAC, or of one-third of a right angle, is equal to
one-fortyeighth of a right angle.

Thus the angle subtended by BG at the centre is  (a right angle).]

Therefore BG is a side of a regular inscribed polygon of 96 sides.

It follows from (7) that

(perimeter of polygon) : 

And

Much more then is the circumference of the circle greater than 3  times the diameter.

Thus the ratio of the circumference to the diameter



ON CONOIDS AND SPHEROIDS.

Introduction*.

“ARCHIMEDES to Dositheus greeting.

In this book I have set forth and send you the proofs of the remaining theorems not included in what I sent you before, and
also of some others discovered later which, though I had often tried to investigate them previously, I had failed to arrive at
because I found their discovery attended with some difficulty. And this is why even the propositions themselves were not
published with the rest. But afterwards, when I had studied them with greater care, I discovered what I had failed in before.

Now the remainder of the earlier theorems were propositions concerning the right-angled conoid [paraboloid of
revolution]; but the discoveries which I have now added relate to an obtuseangled conoid [hyperboloid of revolution] and to
spheroidal figures, some of which I call oblong (παραμάκ α) and others flat ( πιπλατ α).

I. Concerning the right-angled conoid it was laid down that, if a section of a right-angled cone [a parabola] be made to
revolve about the diameter [axis] which remains fixed and return to the position from which it started, the figure comprehended
by the section of the right-angled cone is called a rightangled conoid, and the diameter which has remained fixed is called its
axis, while its vertex is the point in which the axis meets ( πτεται) the surface of the conoid. And if .a plane touch the right-
angled conoid, and another plane drawn parallel to the tangent plane cut off a segment of the conoid, the base of the segment cut
off is defined as the portion intercepted by the section of the conoid on the cutting plane, the vertex [of the segment] as the
point in which the first plane touches the conoid, and the axis [of the segment] as the portion cut off within the segment from the
line drawn through the vertex of the segment parallel to the axis of the conoid.

The questions propounded for consideration were

(1) why, if a segment of the right-angled conoid be cut off by a plane at right angles to the axis, will the segment so cut off
be half as large again as the cone which has the same base as the segment and the same axis, and

(2) why, if two segments be cut off from the right-angled conoid by planes drawn in any manner, will the segments so cut
off have to one another the duplicate ratio of their axes.

II. Respecting the obtuse-angled conoid we lay down the following premisses. If there be in a plane a section of an obtuse-
angled cone [a hyperbola], its diameter [axis], and the nearest lines to the section of the obtuse-angled cone [i.e. the asymptotes
of the hyperbola], and if, the diameter [axis] remaining fixed, the plane containing the aforesaid lines be made to revolve about
it and return to the position from which it started, the nearest lines to the section of the obtuse-angled cone [the asymptotes]
will clearly comprehend an isosceles cone whose vertex will be the point of concourse of the nearest lines and whose axis
will be the diameter [axis] which has remained fixed. The figure comprehended by the section of the obtuseangled cone is
called an obtuse-angled conoid [hyperboloid of revolution], its axis is the diameter which has remained fixed, and its vertex
the point in which the axis meets the surface of the conoid. The cone comprehended by the nearest lines to the section of the
obtuse-angled cone is called [the cone] enveloping the conoid (π ρι χων τò κωνo ιδ ς) and the straight line between the
vertex of the conoid and the vertex of the cone enveloping the conoid is called [the line] adjacent to the axis (πoτεo σα τ  
ξoνι). And if a plane touch the obtuse-angled conoid, and another plane drawn parallel to the tangent plane cut off a segment of
the conoid, the base of the segment so cut off is defined as the portion intercepted by the section of the conoid on the cutting
plane, the vertex [of the segment] as the point of contact of the plane which touches the conoid, the axis [of the segment] as the
portion cut off within the segment from the line drawn through the vertex of the segment and the vertex of the cone enveloping
the conoid; and the straight line between the said vertices is called adjacent to the axis.

Right-angled conoids are all similar; but of obtuse-angled conoids let those be called similar in which the cones
enveloping the conoids are similar.

The following questions are propounded for consideration,

(1) why, if a segment be cut off from the obtuse-angled conoid by a plane at right angles to the axis, the segment so cut off
has to the cone which has the same base as the segment and the same axis the ratio which the line equal to the sum of the axis of
the segment and three times the line adjacent to the axis bears to the line equal to the sum of the axis of the segment and twice
the line adjacent to the axis, and

(2) why, if a segment of the obtuse-angled conoid be cut off by a plane not at right angles to the axis, the segment so cut off



will bear to the figure which has the same base as the segment and the same axis, being a segment of a cone* (áπóτμαμα
κώνoν), the ratio which the line equal to the sum of the axis of the segment and three times the line adjacent to the axis bears to
the line equal to the sum of the axis of the segment and twice the line adjacent to the axis.

III. Concerning spheroidal figures we lay down the following premisses. If a section of an acute-angled cone [ellipse] be
made to revolve about the greater diameter [major axis] which remains fixed and return to the position from which it started,
the figure comprehended by the section of the acute-angled cone is called an oblong spheroid (παραμ κες σφαιρo ιδ ς). But if
the section of the acute-angled cone revolve about the lesser diameter [minor axis] which remains fixed and return to the
position from which it started, the figure comprehended by the section of the acute-angled cone is called a fiat spheroid (
πιπλατύ σφαιρo ιδ ς). In either of the spheroids the axis is defined as the diameter [axis] which has remained fixed, the vertex
as the point in which the axis meets the surface of the spheroid, the centre as the middle point of the axis, and the diameter as
the line drawn through the centre at right angles to the axis. And, if parallel planes touch, without cutting, either of the
spheroidal figures, and if another plane be drawn parallel to the tangent planes and cutting the spheroid, the base of the
resulting segments is defined as the portion intercepted by the section of the spheroid on the cutting plane, their vertices as the
points in which the parallel planes touch the spheroid, and their axes as the portions cut off within the segments from the
straight line joining their vertices. And that the planes touching the spheroid meet its surface at one point only, and that the
straight line joining the points of contact passes through the centre of the spheroid, we shall prove. Those spheroidal figures
are called similar in which the axes have the same ratio to the ‘diameters.’ And let segments of spheroidal figures and conoids
be called similar if they are cut off from similar figures and have their bases similar, while their axes, being either at right
angles to the planes of the bases or making equal angles with the corresponding diameters [axes] of the bases, have the same
ratio to one another as the corresponding diameters [axes] of the bases.

The following questions about spheroids are propounded for consideration,

(1) why, if one of the spheroidal figures be cut by a plane through the centre at right angles to the axis, each of the
resulting segments will be double of the cone having the same base as the segment and the same axis; while, if the plane of
section be at right angles to the axis without passing through the centre, (a) the greater of the resulting segments will bear to the
cone which has the same base as the segment and the same axis the ratio which the line equal to the sum of half the straight line
which is the axis of the spheroid and the axis of the lesser segment bears to the axis of the lesser segment, and (b) the lesser
segment bears to the cone which has the same base as the segment and the same axis the ratio which the line equal to the sum of
half the straight line which is the axis of the spheroid and the axis of the greater segment bears to the axis of the greater
segment;

(2) why, if one of the spheroids be cut by a plane passing through the centre but not at right angles to the axis, each of the
resulting segments will be double of the figure having the same base as the segment and the same axis and consisting of a
segment of a cone* .

(3) But, if the plane cutting the spheroid be neither through the centre nor at right angles to the axis, (a) the greater of the
resulting segments will have to the figure which has the same base as the segment and the same axis the ratio which the line
equal to the sum of half the line joining the vertices of the segments and the axis of the lesser segment bears to the axis of the
lesser segment, and (b) the lesser segment will have to the figure with the same base as the segment and the same axis the ratio
which the line equal to the sum of half the line joining the vertices of the segments and the axis of the greater segment bears to
the axis of the greater segment. And the figure referred to is in these cases also a segment of a cone*.

When the aforesaid theorems are proved, there are discovered by means of them many theorems and problems.

Such, for example, are the theorems

(1) that similar spheroids and similar segments both of spheroidal figures and conoids have to one another the triplicate
ratio of their axes, and

(2) that in equal spheroidal figures the squares on the ‘diameters’ are reciprocally proportional to the axes, and, if in
spheroidal figures the squares on the ‘diameters’ are reciprocally proportional to the axes, the spheroids are equal.

Such also is the problem, From a given spheroidal figure or conoid to cut off a segment by a plane drawn parallel to a
given plane so that the segment cut off is equal to a given cone or cylinder or to a given sphere.

After prefixing therefore the theorems and directions ( πιτáγματα) which are necessary for the proof of them, I will then
proceed to expound the propositions themselves to you. Farewell.

DEFINITIONS.



If a cone be cut by a plane meeting all the sides [generators] of the cone, the section will be either a circle or a section of
an acute-angled cone [an ellipse]. If then the section be a circle, it is clear that the segment cut off from the cone towards the
same parts as the vertex of the cone will be a cone. But, if the section be a section of an acute-angled cone [an ellipse], let the
figure cut off from the cone towards the same parts as the vertex of the cone be called a segment of a cone. Let the base of the
segment be defined as the plane comprehended by the section of the acute-angled cone, its vertex as the point which is also the
vertex of the cone, and its axis as the straight line joining the vertex of the cone to the centre of the section of the acute-angled
cone.

And if a cylinder be cut by two parallel planes meeting all the sides [generators] of the cylinder, the sections will be either
circles or sections of acute-angled cones [ellipses] equal and similar to one another. If then the sections be circles, it is clear
that the figure cut off from the cylinder between the parallel planes will be a cylinder. But, if the sections be sections of acute-
angled cones [ellipses], let the figure cut off from the cylinder between the parallel planes be called a frustum (τóμος) of a
cylinder. And let the bases of the frustum be defined as the planes comprehended by the sections of the acute-angled cones
[ellipses], and the axis as the straight line joining the centres of the sections of the acute-angled cones, so that the axis will be
in the same straight line with the axis of the cylinder.”

Lemma.

If in an ascending arithmetical progression consisting of the magnitudes A1, A2, … An the common difference be equal
to the least term A1, then

n. An < 2 (A1 + A2 + … + An),

and >2(A1 + A3 + … + An-1).

[The proof of this is given incidentally in the treatise On Spirals, Prop. 11. By placing lines side by side to represent the
terms of the progression and then producing each so as to make it equal to the greatest term, Archimedes gives the equivalent of
the following proof.

If Sn = A1 + A2 + … + An-1 + An,
we have also Sn = An + An-1 + … + A1.
And A1 + A2 + An-2 = … = An.

Therefore 2 Sn = (n + l)An,
whence n . An < 2Sn,
and n . An > 2 Sn-1.

Thus, if the progression is a, 2a,… na,

and n2a < 2 Sn,

but < 2Sn-1. ]

Proposition 1.

If Al, B1, C1,…K1 and A2, B2, C2, …K2 be two series of magnitudes such that

and if A3, B3, C3, …K3 and and A4, B4, C4, …K4 be two other series such that



then

The proof is as follows.

Since A3: A1 = A4: A2)
and A1 : B1 = A2 : B2,
while B1 : B3 = B2 : B4,

Again, it follows from equations (α) that
A1 : A2 = B1 : B2 = C1 : C2 = ….

Therefore

A1 : A2 = (A1 + B1 + C1 : C2 = …
or (A1 + B1 + C1 + … + K1) : A1 = (A2 + B2 + C2 + … + K2) : A2;
and A1: A3 = A2: A4

while from equations (γ) it follows in like manner that

A3 : (A3 + B3 + C3 + … +K3) = (A4 + B4 + C4 + … +K4

By the last three equations, ex aequali,

COR. If any terms in the third and fourth series corresponding to terms in the first and second be left out, the result is the same.
For example, if the last terms K3, K4, are absent,

where I immediately precedes K in each series.

Lemma to Proposition 2.

[on Spirals Prop. 10.]

If A1, A2, A3, …An, be n lines forming an ascending arithmetical progression in which the common difference is equal to
the least term A1, then



Let the lines An, An − 1, An − 1, …A1 be placed in a row from left to right. Produce An − 1, An − 2, …A1 until they are each
equal to An, so that the parts produced are respectively equal to A1, A2, …An − 1.

Taking each line successively, we have

And, by addition,

Therefore, in order to obtain the required result, we have to prove that

Now

It follows that

And this last expression can be proved to be equal to
A1

2 + A2
2 + … + An

2



For

Similarly 

whence, by addition,

Thus the equation marked (a) above is true; and it follows that
(n + 1) An

2 + A1 + A2 + A3 + … + An) = 3(A1
2 + A2

2 + … +An
2).

COR. 1. From this it is evident that

Also An
2 = A1{An + 2(An-1 + An-2 + … +A1)}, as above,

so that An
2 > A1(An + An-1 + … +A1),

and therefore
An

2 + A1(A1 + A2 + … + An) < 2An
2.

It follows from the proposition that

COR. 2. All these results will hold if we substitute similar figures for squares on all the lines; for similar figures are in the
duplicate ratio of their sides.

[In the above proposition the symbols A1, A2, A3, …An have been used instead of a, 2a, 3a, …na in order to exhibit the
geometrical character of the proof; but, if we now substitute the latter terms in the various results, we have (1)

Therefore

Also (2) n3<3(12 + 22 + 32 + … +n2),



and (3)

Proposition 2.

If A1, A2… An be any number of areas such that*

then

and

For, by the Lemma immediately preceding Prop. 1,

Also, by the Lemma preceding this proposition,

Hence

and

or

and >A1 + A2 + … + An-1.

It follows that

Proposition 3

(1) If TP, TP′ be two tangents to any conic meeting in T, and if Qq, Q′q′ be any two chords parallel respectively to TP ,
TP′ and meeting in O, then

QO . Oq : Q′O . Oq′ = TP2 : TP2′2.

“And this is proved in the elements of conics*.”



(2) If QQ′ be a chord of a parabola bisected in V by the diameter PV, and if PV be of constant length, then the areas of
the triangle PQQ′ and of the segment PQQ− are both constant whatever be the direction of QQ′.

Let ABB′ be the particular segment of the parabola whose vertex is A, so that BB′ is bisected perpendicularly by the axis at
the point H, where AH = PV.

Draw QD perpendicular to PV.

Let pa be the parameter of the principal ordinates, and let p be another line of such length that

QV2 : QD2 = p :pa;
it will then follow that p is equal to the parameter of the ordinates to the diameter PV i.e. those which are parallel to QV.

* i.e. in the treatises on conics by Aristaeus and Euclid.

“For this is proved in the conics*.”

Thus QV2

And BH2 = pa.AH, while AH = pv.

Therefore QV2 : BH2 = p.pa.

But QV2 : QD2 = p.pa.

hence BH = QD
Thus BH . AH = QD . PV,

and therefore ΔABB′ = ΔPQQ′;
that is, the area of the triangle PQQ′ is constant so long as PV is of constant length.

Hence also the area of the segment PQQ′ is constant under the same conditions: for the segment is equal to  ΔPQQ′.
[Quadrature of the Parabola, Prop. 17 or 24.]

Proposition 4.

The area of any ellipse is to that of the auxiliary circle as the minor axis to the major.
Let AA′ be the major and BB′ the minor axis of the ellipse, and let BB′ meet the auxiliary circle in b, b′.

Suppose O to be such a cir cle that
(circle AbA′b′) : O = CA : CB.

Then shall O be equal to the area of the ellipse.

For, if not, O must be either greater or less than the ellipse.

I. If possible, let O be greater than the ellipse.

We can then inscribe in the circle O an equilateral polygon of 4n sides such that its area is greater than that of the ellipse,
[cf. On the Sphere and Cylinder I. 6.]



Let this be done, and inscribe in the auxiliary circle of the ellipse the polygon AefbghA′… similar to that inscribed in O. Let
the perpendiculars eM, fN,… on AA′ meet the ellipse in E, F,… respectively. Join AE, EF, FB,….

Suppose that P′ denotes the area of the polygon inscribed in the auxiliary circle, and P that of the polygon inscribed in the
ellipse.

Then, since all the lines eM, fN,… are cut in the same proportions at E, F…,

i.e. eM : EM = fN : FN = … = bC : BC,

the pairs of triangles, as eAM, EAM, and the pairs of trapeziums, as eMNf EMNF, are all in the same ratio to one another as
bC to BC, or as CA to CB.

Therefore, by addition,
P′ : P = CA : CB.

Now P′ : (polygon inscribed in O)

Therefore P is equal to the polygon inscribed in O.

But this is impossible, because the latter polygon is by hypothesis greater than the ellipse, and a fortiori greater than P.

Hence O is not greater than the ellipse.

II. If possible, let O be less than the ellipse.

In this case we inscribe in the ellipse a polygon P with 4n equal sides such that P > O.

Let the perpendiculars from the angular points on the axis AA′ be produced to meet the auxiliary circle, and let the
corresponding polygon (P′) in the circle be formed.

Inscribe in O a polygon similar to P′.

Then

Therefore the polygon inscribed in O is equal to the polygon P; which is impossible, because P > O.

Hence O, being neither greater nor less than the ellipse, is equal to it; and the required result follows.

Proposition 5.

If AA′, BB′ be the major and minor axis of an ellipse respectively, and if d be the diameter of any circle, then

(area of ellipse) : (area of circle) = AA′. BB′: d2.



For
(area of ellipse): (area of auxiliary circle)

And
(area of aux. circle) : (area of circle with diam. d) = AA′2: d2.

Therefore the required result follows ex aequali.

Proposition 6.

The areas of ellipses are as the rectangles under their axes.

This follows at once from Props. 4, 5.

COR. The areas of similar ellipses are as the squares of corresponding axes.

Proposition 7.

Given an ellipse with centre C, and a line GO drawn perpendicidar to its plane, it is possible to find a circular cone
with vertex O and such that the given ellipse is a section of it [or, in other words, to find the circular sections of the cone
with vertex O passing through the circumference of the ellipse].

Conceive an ellipse with BB′ as its minor axis and lying in a plane perpendicular to that of the paper. Let CO be drawn
perpendicular to the plane of the ellipse, and let O be the vertex of the required cone. Produce OB, OC, OB′, and in the same
plane with them draw BED meeting OC, OB′ produced in E, D respectively and in such a direction that

BE . ED : EO2 = CA : CO2,

where CA is half the major axis of the ellipse.

“And this is possible, since
BE . ED : EO2 > BC . CB′ : CO2.”

[Both the construction and this proposition are assumed as known.]

Now conceive a circle with BD as diameter lying in a plane at right angles to that of the paper, and describe a cone with
this circle for its base and with vertex O.

We have therefore to prove that the given ellipse is a section of the cone, or, if P be any point on the ellipse, that P lies on
the surface of the cone.

Draw PN perpendicular to BB′. Join ON and produce it to meet BD in M, and let MQ be drawn in the plane of the circle on
BD as diameter perpendicular to BD and meeting the circle in Q. Also let FG, HK be drawn through E, M· respectively
parallel to BB′.

We have then



Therefore QM2 : 

whence, since PN, QM are parallel, OPQ is a straight line.

But Q is on the circumference of the circle on BD as diameter; therefore OQ is a generator of the cone, and hence P lies on
the cone.

Thus the cone passes through all points on the ellipse.

Proposition 8.

Given an ellipse, a plane through one of its axes AA′ and perpendicular to the plane of the ellipse, and a line CO drawn
from C, the centre, in the given plane through AA′ but not perpendicidar to AA′, it is possible to find a cone with vertex O
such that the given ellipse is a section of it [or, in other words, to find the circular sections of the cone with vertex O whose
surface passes through the circumference of the ellipse].

By hypothesis, OA, OA′ are unequal. Produce OA′ to D so that OA = OD. Join AD, and draw FG through C parallel to it.

The given ellipse is to be supposed to lie in a plane perpendicular to the plane of the paper. Let BB′ be the other axis of the
ellipse.

Conceive a plane through AD perpendicular to the plane of the paper, and in it describe either (a), if CB2 = FG · CG, a
circle with diameter AD, or (b), if not, an ellipse on AD as axis such that, if d be the other axis,

d2 : AD2 = CB2 : FC . CG.

Take a cone with vertex O whose surface passes through the circle or ellipse just drawn. This is possible even when the
curve is an ellipse, because the line from O to the middle point of AD is perpendicular to the plane of the ellipse, and the
construction is effected by means of Prop. 7.

Let P be any point on the given ellipse,· and we have only to prove that P lies on the surface of the cone so described.

Draw PN perpendicular to AA′. Join ON and produce it to meet AD in M. Through M draw HK parallel o A′A.



Lastly, draw MQ perpendicular to the plane of the paper (and therefore perpendicular to both HK and AD) meeting the
ellipse or circle about AD (and therefore the surface of the cone) in Q.

Then

Therefore, alternately,

Thus, since PN, QM are parallel, OPQ is a straight line; and, Q being on the surface of the cone, it follows that P is also on
the surface of the cone.

Similarly all points on the ellipse are also on the cone, and the ellipse is therefore a section of the cone.

Proposition 9.

Given an ellipse, a plane through one of its aoces and perpendicular to that of the ellipse, and a straight line CO drawn
from the centre C of the ellipse in the given plane through the axis but not perpendicular to that axis, it is possible to find a
cylinder ivith aods OC such that the ellipse is a section of it [or, in other words, to find the circular sections of the cylinder
with axis OC whose surface passes through the circumference of the given ellipse].

Let AA′ be an axis of the ellipse, and suppose the plane of the ellipse to be perpendicular to that of the paper, so that O C
lies in the plane of the paper.

Draw AD, A′E parallel to CO, and let DE be the line through O perpendicular to both AD and A′E.

We have now three different cases according as the other axis BB′ of the ellipse is (1) equal to, (2) greater than, or (3) less
than, DE.

(1) Suppose BB′ = DE.

Draw a plane through DE at right angles to OC, and in this plane describe a circle on DE as diameter. Through this circle
describe a cylinder with axis OC.

This cylinder shall be the cylinder required, or its surface shall pass through every point P of the ellipse.

For, if P be any point on the ellipse, draw PN perpendicular to AA′; through N draw NM parallel to CO meeting DE in if,
and through if, in the plane of the circle on DE as diameter, draw MQ perpendicular to DE, meeting the circle in Q.

Then, since DE = BB′,
PN2 : AN . NA′ = DO2: AG . CA′.

And DM . ME : AN, NA′ = DO2: AO2,



since AD, NM, CO, A′E are parallel.

Therefore

by the property of the circle.

Hence, since PN, QM are equal as well as parallel, PQ is parallel to MN and therefore to CO. It follows that PQ is a
generator of the cylinder, whose surface accordingly passes through P.

(2) If BB′ > DE, we take E′ on A′E such that DE ′ = BB′ and describe a circle on DE′ as diameter in a plane perpendicular
to that of the paper; and the rest of the construction and proof is exactly similar to those given for case (1).

(3) Suppose BB′ > DE.

Take a point K on CO produced such that
DO2 – CB2 = OK2.

From K draw KR perpendicular to the plane of the paper and equal to CB.

Thus OR2 = OK2 + CB2 = OD2.

In the plane containing DE, OR describe a circle on DE as diameter. Through this circle (which must pass through R) draw
a cylinder with axis OC

We have then to prove that, if P be any point on the given ellipse, P lies on the cylinder so described.

Draw PN perpendicular to AA′, and through N draw NM parallel to CO meeting DE in ·M. In the plane of the circle on DE
as diameter draw MQ perpendicular to DE and meeting the circle in Q.

Lastly, draw QH perpendicular to NM produced. QH will then be perpendicular to the plane containing AC, DE, i.e. the
plane of the paper.

Now QM2 = QM2 = KR2 : OR2, by similar triangles.

And

Hence, ex aequali, since OR = OD,

Thus QH = PN. And QH, PN are also parallel. Accordingly PQ is parallel to MN, and therefore to CO, so that PQ is a
generator, and the cylinder passes through P.

Proposition 10.

It was proved by the earlier geometers that any two cones have to one anothei’ the ratio compounded of the ratios of
their bases and of their heights*. The same method of proof will show that any segments of cones have to one another the



ratio compounded of the ratios of their bases and of their heights†.

The proposition that any ‘frustum’ of a cylinder is triple of the conical segment which has the same base as the frustum
and equal height is also proved in the same manner as the proposition that the cylinder is triple of the cone which has the
same base as the cylinder and equal height†.

Proposition 11.

(1) If a paraboloid of revolution be cut by a plane through, or parallel to, the axis, the section will be a parabola
equal to the original parabola which by its revolution generates the paraboloid. And the axis of the section will be the
intersection between the cutting plane and the plane through the axis of the paraboloid at right angles to the cutting plane.

If the paraboloid be cut by a plane at right angles to its axis, the section will be a circle whose centre is on the axis.

(2) If a hyperboloid of revolution be cut by a plane through the axis, parallel to the axis, or through the centre, the
section tuill be a hyperbola, (a) if the section be through the axis, equal, (b) if parallel to the axis, similar, (c) if through
the centre, not similar, to the original hyperbola which by its revolution generates the hyperboloid . And the axis of the
section will be the intersection of the cutting plane and the plane through the axis of the hyperboloid at right angles to the
cutting plane.

Any section of the hyperboloid by a plane at right angles to the axis will be a circle whose centre is on the axis.

(3) If any of the spheroidal figures be cut by a plane through the axis or parallel to the axis, the section will be an
ellipse, (a) if the section be through the axis, equal, (b) if parallel to the axis, similar, to the ellipse which by its revolution
generates the figure. And the aocis of the section will be the intersection of the cutting plane and the plane through the axis
of the spheroid at right angles to the cutting plane.

If the section be by a plane at right angles to the axis of the spheroid, it will be a circle whose centre is on the axis.

(4) If any of the said figures be cut by a plane through the axis, and if a perpendicular be drawn to the plane of
section from any point on the surface of the figure but not on the section, that perpendicular will fall within the section.

“And the proofs of all these propositions are evident.”*

Proposition 12.

If a paraboloid of revolution be cut by a plane neither parallel nor perpendicular to the axis, and if the plane through
the axis perpendicular to the cutting plane intersect it in a straight line of which the portion intercepted within the
paraboloid is RR′, the section of the paraboloid will be an ellipse whose major axis is RR′ and whose minor axis is equal to
the perpendicular distance between the lines through R, R′ parallel to the axis of the paraboloid.

Suppose the cutting plane to be perpendicular to the plane of the paper, and let the latter be the plane through the axis ANF
of the paraboloid which intersects the cutting plane at right angles in RR′ Let RH be parallel to the axis of the paraboloid, and
R′H perpendicular to RH.

Let Q be any point on the section made by the cutting plane, and from Q draw QM perpendicular to RR′ QM will therefore
be perpendicular to the plane of the paper.

Through M draw DMFE perpendicular to the axis ANF meeting the parabolic section made by the plane of the paper in D,
E. Then QM is perpendicular to DE, and, if a plane be drawn through DE, QM, it will be perpendicular to the axis and will cut
the paraboloid in a circular section.



Since Q is on this circle,
QM2 = DM . ME.

Again, if PT be that tangent to the parabolic section in the plane of the paper which is parallel to RR′ and if the tangent at A
meet PT in O, then, from the property of the parabola,

Therefore

Hence Q lies on an ellipse whose major axis is RR′ and whose minor axis is equal to R′H.

Propositions 13, 14.

If a hyperboloid of revolution be cut by a plane meeting all the generators of the enveloping cone, or if an ‘oblong’
spheroid be cut by a plane not perpendicular to the axis*, and if a plane through the axis intersect the cutting plane at
right angles in a straight line on which the hyperboloid or spheroid intercepts a length RR ′ then the section by the cutting
plane will be an ellipse whose major axis is RR′.

Suppose the cutting plane to be at right angles to the plane of the paper, and suppose the latter plane to be that through the
axis ANF which intersects the cutting plane at right angles in RR′. The section of the hyperboloid or spheroid by the plane of the
paper is thus a hyperbola or ellipse having ANF for its transverse or major axis.

Take any point on the section made by the cutting plane, as Q, and draw QM perpendicular to RR′ . QM will then be
perpendicular to the plane of the paper.

Through M draw DFE at right angles to the axis ANF meeting the hyperbola or ellipse in D, E ; and through QM, DE let a
plane be described. This plane will accordingly be perpendicular to the axis and will cut the hyperboloid or spheroid in a
circular section.

Thus QM2 = DM . ME.

Let PT be that tangent to the hyperbola or ellipse which is parallel to RR′, and let the tangent at A meet PT in O.

Then, by the property of the hyperbola or ellipse,
DM . ME : RM. MR′ = OA2 : OP2,

or QM2: RM . MR′ = OA2 : OP2.

Now (1) in the hyperbola OA < OP, because AT < AN*, and accordingly OT < OP, while OA < OT,

(2) in the ellipse, if KK′ be the diameter parallel to RR′, and BB′ the minor axis,



BC . CB′ : KC . CK′= OA2: OP2;

and BC. CB′ < KG . GK′, so that OA < OP.

Hence in both cases the locus of Q is an ellipse whose major axis is RR′.

COR. 1. If the spheroid be a ‘flat’ spheroid, the section will be an ellipse, and everything will proceed as before except
that RR′ will in this case be the minor axis.

COR. 2. In all conoids or spheroids parallel sections will be similar, since the ratio OA2: OP2 is the same for all the
parallel sections.

* With reference to this assumption cf. the Introduction, chapter III.s 3.

Proposition 15.

(1) If from any point on the surface of a conoid a line be drawn, in the case of the paraboloid, parallel to the axis,
and, in the case of the hyperboloid, parallel to any line passing through the vertex of the enveloping cone, the part of the
straight line ‘which is in the same direction as the convexity of the surface will fall without it, and the part which is in the
other direction within it.

For, if a plane be drawn, in the case of the paraboloid, through the axis and the point, and, in the case of the hyperboloid,
through the given point and through the given straight line drawn through the vertex of the enveloping cone, the section by the
plane will be (a) in the paraboloid a parabola whose axis is the axis of the paraboloid, (b) in the hyperboloid a hyperbola in
which the given line through the vertex of the enveloping cone is a diameter *. [Pro. 11]

Hence the property follows from the plane properties of the

(2) If a plane touch a conoid without cutting it, it toil I touch it at one point only, and the plane drawn through the
point of contact and the axis of the conoid ivill be at right angles to the plane which touches it.

For, if possible, let the plane touch at two points. Draw through each point a parallel to the axis. The plane passing through
both parallels will therefore either pass through, or be parallel to, the axis. Hence the section of the conoid made by this plane
will be a conic [Prop. 11 (1), (2)], the two points will lie on this conic, and the line joining them will lie within the conic and
therefore within the conoid. But this line will be in the tangent plane, since the two points are in it. Therefore some portion of
the tangent plane will be within the conoid; which is impossible, since the plane does not cut it.

* There seems to be some error in the text here, which says that “the diameter” (i.e. axis) of the hyperbola is “the straight line drawn in the conoid from the vertex of
the cone.” But this straight line is not, in general, the axis of the section.

Therefore the tangent plane touches in one point only.

That the plane through the point of contact and the axis is perpendicular to the tangent plane is evident in the particular case
where the point of contact is the vertex of the conoid. For, if two planes through the axis cut it in two conics, the tangents at the
vertex in both conics will be perpendicular to the axis of the conoid. And all such tangents will be in the tangent plane, which
must therefore be perpendicular to the axis and to any plane through the axis.

If the point of contact P is not the vertex, draw the plane passing through the axis AN and the point P.

It will cut the conoid in a conic whose axis is AN and the tangent plane in a line DPE touching the conic at P. Draw PNP
perpendicular to the axis, and draw a plane through it also perpendicular to the axis. This plane will make a circular section
and meet the tangent plane in a tangent to the circle, which will therefore be at right angles to PN. Hence the tangent to the
circle will be at right angles to the plane containing PN, AN; and it follows that this last plane is perpendicular to the tangent
plane.



Proposition 16.

(1) If a plane touch any of the spheroidal figures without cutting it, it will touch at one point only, and the plane
through the point of contact and the aoois will be at right angles to the tangent plane.

This is proved by the same method as the last proposition.

(2) If any conoid or spheroid be cut by a plane through the aoois, and if through any tangent to the resulting conic a
plane be erected at right angles to the plane of section, the plane so erected will touch the conoid or spheroid in the same
point as that in which the line touches the conic.

For it cannot meet the surface at any other point. If it did, the perpendicular from the second point on the cutting plane
would be perpendicular also to the tangent to the conic and would therefore fall outside the surface. But it must fall within
it. [Prop. 11 (4)]

(3) If two parallel planes touch any of the spheroidal figures, the line joining the points of contact will pass through
the centre of the spheroid.

If the planes are at right angles to the axis, the proposition is obvious. If not, the plane through the axis and one point of
contact is at right angles to the tangent plane at that point. It is therefore at right angles to the parallel tangent plane, and
therefore passes through the second point of contact. Hence both points of contact lie on one plane through the axis, and the
proposition is reduced to a plane one.

Proposition 17.

If two parallel planes touch any of the spheroidal figures, and another plane be drawn parallel to the tangent planes
and passing through the centre, the line drawn through any point of the circumference of the residting section parallel to
the chord of contact of the tangent planes will fall outside the spheroid.

This is proved at once by reduction to a plane proposition.

Archimedes adds that it is evident that, if the plane parallel to the tangent planes does not pass through the centre, a straight
line drawn in the manner described will fall without the spheroid in the direction of the smaller segment but within it in the
other direction.

Proposition 18.

Any spheroidal figure which is cut by a plane through the centre is divided, both as regards its surface and its volume,
into two equal parts by that plane.

To prove this, Archimedes takes another equal and similar spheroid, divides it similarly by a plane through the centre, and
then uses the method of application.

Proposition 19, 20.

Given a segment cut off by a plane from a paraboloid or hyperboloid of revolution, or a segment of a spheroid less than
half the spheroid also cut off by a plane, it is possible to inscribe in the segment one solid figure and to circumscribe about
it another solid figure, each made up of cylinders or ‘frusta’ of cylinders of equal height, and such that the circumscribed
figure exceeds the inscribed figure by a volume less than that of any given solid.

Let the plane base of the segment be perpendicular to the plane of the paper, and let the plane of the paper be the plane
through the axis of the conoid or spheroid which cuts the base of the segment at right angles in BC. The section in the plane of
the paper is then a conic BAC. [Prop. 11]

Let EAF be that tangent to the conic which is parallel to BC, and let A be the point of contact. Through EAF draw a plane
parallel to the plane through BC bounding the segment. The plane so drawn will then touch the conoid or spheroid at
A. [Prop. 16]

(1) If the base of the segment is at right angles to the axis of the conoid or spheroid, A will be the vertex of the conoid or
spheroid, and its axis AD will bisect BC at right angles.



(2) If the base of the segment is not at right angles to the axis of the conoid or spheroid, we draw AD
(a) in the paraboloid, parallel to the axis,

(b) in the hyperboloid, through the centre (or the vertex of the enveloping cone),

(c) in the spheroid, through the centre, and in all the cases it will follow that AD bisects BC in D.

Then A will be the vertex of the segment, and AD will be its axis.

Further, the base of the segment will be a circle or an ellipse with BC as diameter or as an axis respectively, and with
centre D. We can therefore describe through this circle or ellipse a cylinder or a ‘frustum’ of a cylinder whose axis is
AD. [Prop. 9]

Dividing this cylinder or frustum continually into equal parts by planes parallel to the base, we shall at length arrive at a
cylinder or frustum less in volume than any given solid.

Let this cylinder or frustum be that whose axis is OD, and let AD be divided into parts equal to OD, at L, M,…. Through L,
M,… draw lines parallel to BC meeting the conic in P, Q,…, and through these lines draw planes parallel to the base of the
segment. These will cut the conoid or spheroid in circles or similar ellipses. On each of these circles or ellipses describe two
cylinders or frusta of cylinders each with axis equal to OD, one of them lying in the direction of A and the other in the direction
of D, as shown in the figure.

Then the cylinders or frusta of cylinders drawn in the direction of A make up a circumscribed figure, and those in the
direction of D an inscribed figure, in relation to the segment.

Also the cylinder or frustum PG in the circumscribed figure is equal to the cylinder or frustum PH in the inscribed figure,
QI in the circumscribed figure is equal to QK in the inscribed figure, and so on.

Therefore, by addition,

But the cylinder or frustum whose axis is OD is less than the given solid figure; wrhence the proposition follows.

 

“ Having set out these preliminary propositions, let us proceed to demonstrate the theorems propounded with reference to
the figures.”

Propositions 21, 22.

Any segment of a paraboloid of revolution is half as large again as the cone or segment of a cone which has the same
base and the same axis.

Let the base of the segment be perpendicular to the plane of the paper, and let the plane of the paper be the plane through
the axis of the paraboloid which cuts the base of the segment at right angles in BC and makes the parabolic section BAC.

Let EF be that tangent to the parabola which is parallel to BC, and let A be the point of contact.

Then (1), if the plane of the base of the segment is perpendicular to the axis of the paraboloid, that axis is the line AD
bisecting BG at right angles in D.

(2) If the plane of the base is not perpendicular to the axis of the paraboloid, draw AD parallel to the axis of the
paraboloid. AD will then bisect BC, but not at right angles.



Draw through EF a plane parallel to the base of the segment. This will touch the paraboloid at A, and A will be the vertex
of the segment, AD its axis.

The base of the segment will be a circle with diameter BC or an ellipse with BC as major axis.

Accordingly a cylinder or a frustum of a cylinder can be found passing through the circle or ellipse and having AD for its
axis [Prop. 9J; and likewise a cone or a segment of a cone can be drawn passing through the circle or ellipse and having A for
vertex and AD for axis. [Prop. 8]

Suppose X to be a cone equal to  (cone or segment of cone ABC). The cone X is therefore equal to half the cylinder or
frustum of a cylinder EC. [Cf. Prop. 10]

We shall prove that the volume of the segment of the paraboloid is equal to X.

If not, the segment must be either greater or less than X.

I. If possible, let the segment be greater than X.

We can then inscribe and circumscribe, as in the last proposition, figures made up of cylinders or frusta of cylinders with
equal height and such that

(circumscribed fig.) − (inscribed fig.) < (segment) − X.

Let the greatest of the cylinders or frusta forming the circumscribed figure be that whose base is the circle or ellipse about
BC and whose axis is OD, and let the smallest of them be that whose base is the circle or ellipse about PP′ and whose axis is
AL.

Let the greatest of the cylinders forming the inscribed figure be that whose base is the circle or ellipse about RR′ and whose
axis is OD, and let the smallest be that whose base is the circle or ellipse about PP′ and whose axis is LM.

Produce all the plane bases of the cylinders or frusta to meet the surface of the complete cylinder or frustum EC.

Now, since

(circumscribed fig.) – (inscr. fig.) < (segment) – X,
it follows that .

Next, comparing successively the cylinders or frusta with heights equal to OD and respectively forming parts of the
complete cylinder or frustum EC and of the inscribed figure, we have

(first cylinder or frustum in EC) : (first in inscr. fig.)

And (second cylinder or frustum in EC) : (second in inscr. fig.),
= HO : SN, in like manner,

and so on.

Hence [Prop. 1] (cylinder or frustum EC) : (inscribed figure)
= (BD + HO + …) : (TO + SN + …),

where BD, HO,… are all equal, and BD, TO, SN,… diminish in arithmetical progression.

But [Lemma preceding Prop. 1]



BD + HO + … > 2(TO + SN + …).

Therefore (cylinder or frustum EC) > 2 (inscribed fig.),

or X > (inscribed fig.);

which is impossible, by (α) above.

II. If possible, let the segment be less than X.

In this case we inscribe and circumscribe figures as before, but such that

(circumscr. fig.) − (inscr. fig.) < X −(segment),
whence it follows that

And, comparing the cylinders or frusta making up the complete cylinder or frustum CE and the circumscribed figure
respectively, we have

(first cylinder or frustum in CE) : (first in circumscr. fig.)

and so on.

Hence [Prop. 1]

(cylinder or frustum CE) : (circumscribed fig.)

and it follows that
X < (circumscribed fig.);

which is impossible, by (β).

Thus the segment, being neither greater nor less than X, is equal to it, and therefore to ABC).

Proposition 23

If from a paraboloid of revolution two segments be cut off one by a plane perpendicular to the axis, the other by a
plane not perpendicular to the axis, and if the axes of the segments are equal, the segments will be equal in volume.

Let the two planes be supposed perpendicular to the plane of the paper, and let the latter plane be the plane through the axis
of the paraboloid cutting the other two planes at right angles in BB′, QQ′ respectively and the paraboloid itself in the parabola
QPQ′B′.

Let AN, PV be the equal axes of the segments, and A, P their respective vertices.



Draw QL parallel to AN or PV and Q′L perpendicular to QL.

Now, since the segments of the parabolic section cut off by BB′, QQ′ have equal axes, the triangles ABB′, PQQ′ are equal
[Prop. 3], Also, if QD be perpendicular to PV, QD = BN in the same Prop. 3).

Conceive two cones drawn with the same bases as the segments and with A, P as vertices respectively. The height of the
cone PQQ′ is then PK is perpendicular to QQ′.

Now the cones are in the ratio compounded of the ratios of their bases and of their heights, i.e. the ratio compounded of (1)
the ratio of the circle about BB′ to the ellipse about QQ′, and (2) the ratio of AN to PK.

That is to say, we have, by means of Props. 5, 12,
(cone ABB′) : (cone PQQ′) = (BB2: QQ′ . Q′L). (AN : PK).

Therefore

Since AN = PV, the ratio of the cones is a ratio of equality : and it follows that the segments, being each half as large again
as the respective cones [Prop. 22], are equal,

Proposition 24.

If from a paraboloid of revolution two segments be cut off by planes drawn in any manner, the segments will be to one
another as the squares on their axes.

For let the paraboloid be cut by a plane through the axis in the parabolic section P′PApp′, and let the axis of the parabola
and paraboloid be ANN′.

Measure along ANN′. the lengths AN, AN′ equal to the respective axes of the given segments. and through N, N′ draw planes
perpendicular to the axis, making circular sections on Pp, P′p′ as diameters respectively. With these circles as bases and with
the common vertex A let two cones be described.



Now the segments of the paraboloid whose bases are the circles about Pp, P′p′ are equal to the given segments
respectively, since their respective axes are equal [Prop. 23]; and, since the segments APp, AP′p′ are half as large again as the
cones APp, AP′p′ respectively, we have only to show that the cones are in the ratio of AN2 to AN′2.

But

thus the proposition is proved.

Propositions 25, 26.

In any hyperboloid of revolution, if A be the vertex and AD the axis of any segment cut off by a plane, and if CA be the
semidiameter of the hyperboloid through A (CA being of course in the same straight line with AD), then

(segment) : (cone with same base and axis)
= (AD + 3CA) : (AD + 2CA).

Let the plane cutting off the segment be perpendicular to the plane of the paper, and let the latter plane be the plane through
the axis of the hyperboloid which intersects the cutting plane at right angles in BB′, and makes the hyperbolic segment BAB′. Let
C be the centre of the hyperboloid (or the vertex of the enveloping cone).

Let EF be that tangent to the hyperbolic section which is parallel to BB′. Let EF touch at A, and join CA. Then CA produced
will bisect BB′ at D, CA will be a semi-diameter of the hyperboloid, A will be the vertex of the segment, and AD its axis.
Produce AC to A′ and H, so that AC =CA′ = A′H.

Through EF draw a plane parallel to the base of the segment. This plane will touch the hyperboloid at A.

Then (1), if the base of the segment is at right angles to the axis of the hyperboloid, A will be the vertex, and AD the axis, of
the hyperboloid as well as of the segment, and the base of the segment will be a circle on BB′ as diameter.

(2) If the base of the segment is not perpendicular to the axis of the hyperboloid, the base will be an ellipse on BB′ as
major axis. [prop. 13]



Then we can draw a cylinder or a frustum of a cylinder EBB′F passing through the circle or ellipse about BB′ and having
AD for its axis; also we can describe a cone or a segment of a cone through the circle or ellipse and having A for its vertex.

We have to prove that
(segment ABB′) : (cone or segment of cone ABB′) =HD : A′D.

Let V be a cone such that

and we have to prove that V is equal to the segment.

Now
(cylinder or frustum EB′) : (cone or segmt. of cone ABB′) = 3:1.

Therefore, by means of (α),

If the segment is not equal to V, it must either be greater or less.

I. If possible, let the segment be greater than V.

Inscribe and circumscribe to the segment figures made up of cylinders or frusta of cylinders, with axes along AD and all
equal to one another, such that

(circumscribed fig.) − (inscr. fig.) <(segmt.) − V,

whence .

Produce all the planes forming the bases of the cylinders or frusta of cylinders to meet the surface of the complete cylinder
or frustum EB′.



Then, if ND be the axis of the greatest cylinder or frustum in the circumscribed figure, the complete cylinder will be
divided into cylinders or frusta each equal to this greatest cylinder or frustum.

Let there be a number of straight lines a equal to AA′ and as many in number as the parts into which AD is divided by the
bases of the cylinders or frusta. To each line a apply a rectangle which shall overlap it by a square, and let the greatest of the
rectangles be equal to the rectangle AD. A′D and the least equal to the rectangle AL . A′L; also let the sides of the overlapping
squares b, p,q,…l be in descending arithmetical progression. Thus b,p, q,…l will be respectively equal to AD, AN, AM,…AL,
and the rectangles (ab + b2), (ap + p2),.. .(al + l2) will be respectively equal to AD. A′D, AN. A′N,.. .AL . A′L.

Suppose, further, that we have a series of spaces S each equal to the largest rectangle AD. A′D and as many in number as the
diminishing rectangles.

Comparing now the successive cylinders or frusta (1) in the complete cylinder or frustum EB′ and (2) in the inscribed
figure, beginning from the base of the segment, we have

(first cylinder or frustum in EB′) : (first in inscr. figure)

Again

(second cylinder or frustum in EB′) : (second in inscr. fig.)

and so on.

The last cylinder or frustum in the complete cylinder or frustum EB′ has no cylinder or frustum corresponding to it in the
inscribed figure.

Combining the proportions, we have [Prop. 1]
(cylinder or frustum EB′): (inscribed figure)

Hence (inscribed figure) < V.

But this is impossible, because, by (λ) above, the inscribed figure is greater than V.

II. Next suppose, if possible, that the segment is less than V.

In this case we circumscribe and inscribe figures such that,

(circumscribed fig.) − (inscribed fig.) > F −(segment),

whence we derive.

We now compare successive cylinders or frusta in the complete cylinder or frustum and in the circumscribed figure ; and



we have

(first cylinder or frustum in EB′) : (first in circumscribed fig.)

and so on.

Hence [Prop. 1]
(cylinder or frustum EB′) : (circumscribed fig.)

= (sum of all spaces S) : (ab + b2) + (ap + p2) + …

Hence the circumscribed figure is greater than V; which is impossible, by (δ) above.

Thus the segment is neither greater nor less than V, and is therefore equal to it.

Therefore, by (α),
(segment ABB′) : (cone or segment of cone ABB′)

= (AD + 3CA) : (AD + 2CA).

Proposition 27, 28, 29, 30.

(1) In any spheroid whose centre is C, if a plane meeting the axis cut off a segment not greater than half the spheroid
and having A for its vertex and AD for its axis, and if A′D be the axis of the remaining segment of the spheroid, then
(first segmt) : (cone or segmt. of cone with same base and axis)

(2) As a particular case, if the plane passes through the centre, so that the segment is half the spheroid, half the
spheroid is double of the cone or segment of a cone tvhich has the same vertex and axis.

Let the plane cutting off the segment be at right angles to the plane of the paper, and let the latter plane be the plane through
the axis of the spheroid which intersects the cutting plane in BB′ and makes the elliptic section ABA′B′.

Let EF, E′F′ be the two tangents to the ellipse which are parallel to BB′, let them touch it in A, A′, and through the tangents
draw planes parallel to the base of the segment. These planes will touch the spheroid at A, A′, which will be the vertices of the
two segments into which it is divided. Also A A′ will pass through the centre C and bisect BB′ in D.

Then (1) if the base of the segments be perpendicular to the axis of the spheroid, A, A′ will be the vertices of the spheroid
as well as of the segments, AA′ will be the axis of the spheroid, and the base of the segments will be a circle on BB′ as
diameter;

(2) if the base of the segments be not perpendicular to the axis of the spheroid, the base of the segments will be an ellipse
of which BB′ is one axis, and AD, A′D will be the axes of the segments respectively.

We can now draw a cylinder or a frustum of a cylinder EBB′F through the circle or ellipse about BB′ and having AD for its
axis; and we can also draw a cone or a segment of a cone passing through the circle or ellipse about BB′ and having A for its
vertex.



We have then to show that, if CA′ be produced to H so that CA′ = A′H,
(segment ABB′) : (cone or segment of cone ABB′) = HD : A′D

Let V be such a cone that

V: (cone or segment of cone ABB′) = HD : A′D …(α);
and we have to show that the segment ABB′ is equal to V.

But, since
(cylinder or frustum EB′) : (cone or segment of cone ABB′) = 3:1,

we have, by the aid of (α),

Now, if the segment ABB′ is not equal to V, it must be either greater or less.

I. Suppose, if possible, that the segment is greater than V.

Let figures be inscribed and circumscribed to the segment consisting of cylinders or frusta of cylinders, with axes along AD
and all equal to one another, such that

(circumscribed fig.) − (inscribed fig.) < (segment) − V,
whence it follows that

Produce all the planes forming the bases of the cylinders or frusta to meet the surface of the complete cylinder or frustum
EB′ Thus, if ND be the axis of the greatest cylinder or frustum of a cylinder in the circumscribed figure, the complete cylinder
or frustum EB′ will be divided into cylinders or frusta of cylinders each equal to the greatest of those in the circumscribed



figure.

Take straight lines d a′ each equal to A′D and as many in number as the parts into which AD is divided by the bases of the
cylinders or frusta, and measure da along d a′ equal to AD. It follows that aa′ = 2CD.

Apply to each of the lines a′d rectangles with height equal to ad, and draw the squares on each of the lines ad as in the
figure. Let S denote the area of each complete rectangle.

From the first rectangle take away a gnomon with breadth equal to AN (i.e. with each end of a length equal to AN); take
away from the second rectangle a gnomon with breadth equal to AM, and so on, the last rectangle having no gnomon taken from
it.
Then

Similarly,

the second gnomon = AM. A′M,
and so on.

And the last gnomon (that in the last rectangle but one) is equal to AL. A′L.

Also, after the gnomons are taken away from the successive rectangles, the remainders (which we will call R1, R2,…Rn,
where n is the number of rectangles and accordingly Rn = S) are rectangles applied to straight lines each of length aa′ and “
exceeding by squares “ whose sides are respectively equal to DN, DM,… DA.

For brevity, let DN be denoted by x, and aa′ or 2CD by c, so that R1 = cx + x2, R2 = c iddot; 2x + (2x)2,…

Then, comparing successively the cylinders or frusta of cylinders (1) in the complete cylinder or frustum EB′ and (2) in the
inscribed figure, we have

(first cylinder or frustum in EB′) : (first in inscribed fig.)

(second cylinder or frustum in EB′) : (second in inscribed fig.)
= S : (second gnomon),

and so on.

The last of the cylinders or frusta in the cylinder or frustum EB′ has none corresponding to it in the inscribed figure, and
there is no corresponding gnomon.

Combining the proportions, we have [by Prop. 1]

(cylinder or frustum EB′) : (inscribed fig.)
= (sum of all spaces S) : (sum of gnomons).

Now the differences between S and the successive gnomons are R1, R2,… Rn, while

where b = nx = AD.

Hence [Prop. 2]



(sum of all spaces S) : 

It follows that

Thus (cylinder or frustum EB′) : (inscribed fig.)

from (β) above.

Therefore (inscribed fig.) < V;
which is impossible, by (λ) above.

Hence the segment ABBf is not greater than V.

II. If possible, let the segment ABB′ be less than V.

We then inscribe and circumscribe figures such that
(circumscribed fig.) – (inscribed fig.) < V – (segment),

whence .

In this case we compare the cylinders or frusta in (EB′) with those in the circumscribed figure.

Thus

and so on.

Lastly (last in EB′) : (last in circumscribed fig.)
= S : (last gnomon).

Now

{S + (all the gnomons)} = nS − (R1 – R2 + … + Rn-1).

And

so that

It follows that, if we combine the above proportions as in Prop. 1, we obtain
(cylinder or frustum EB′) : (circumscribed fig.)



Hence the circumscribed figure is greater than V; which is impossible, by (δ) above.

Thus, since the segment ABB′ is neither greater nor less than V, it is equal to it; and the proposition is proved.

(2) The particular case [Props. 27, 28] where the segment is half the spheroid differs from the above in that the distance
CD or c/2 vanishes, and the rectangles cb + b2 are simply squares (b2), so that the gnomons are simply the differences between
b2 and x2, b2 and (2x)2, and so on.

Instead therefore of Prop. 2 we use the Lemma to Prop. 2, Cor. 1, given above [On Spirals, Prop. 10], and instead of the
ratio  we obtain the ratio 3 : 2, whence

(segment ABB′) : (cone or segment of cone ABB′) = 2:1.

[This result can also be obtained by simply substituting CA for AD in the ratio (3CA − AD) : (20A − AD).]

Proposition 31, 32.

If a plane divide a spheroid into two unequal segments, and if AN, A′N be the axes of the lesser and greater segments
respectively, while C is the centre of the spheroid, then
(greater segmt.) : (cone or segmt. of cone with same base and aoris)

= CA + AN : AN.

Let the plane dividing the spheroid be that through PP′ perpendicular to the plane of the paper, and let the latter plane be
that through the axis of the spheroid which intersects the cutting plane in PP′ and makes the elliptic section PAP′A′.

Draw the tangents to the ellipse which are parallel to PP′; let them touch the ellipse at A, A′, and through the tangents draw
planes parallel to the base of the segments. These planes will touch the spheroid at A, A′, the line AA′ will pass through the
centre C and bisect PP′ in N, while AN, A′N will be the axes of the segments.

Then (1) if the cutting plane be perpendicular to the axis of the spheroid, AA′ will be that axis, and A, A′ will be the vertices
of the spheroid as well as of the segments. Also the sections of the spheroid by the cutting plane and all planes parallel to it
will be circles.

(2) If the cutting plane be not perpendicular to the axis, the base of the segments will be an ellipse of which PP′ is an axis,
and the sections of the spheroid by all planes parallel to the cutting plane will be similar ellipses.

Draw a plane through C parallel to the base of the segments and meeting the plane of the paper in BB′.

Construct three cones or segments of cones, two having A for their common vertex and the plane sections through PP′, BB′



for their respective bases, and a third having the plane section through PP′ for its base and A′ for its vertex.

Produce CA to H and CA′ to H′ so that

AH = A′H′ = CA.

We have then to prove that
(segment A′PP′) : (cone or segment of cone A′PP′)

Now half the spheroid is double of the cone or segment of a cone ABB′ [Props. 27, 28]. Therefore

(the spheroid) = 4 (cone or segment of cone ABB′).

But
(cone or segmt. of cone ABB′): (cone or segint. of cone APP′)

If we measure AK along AA′ so that
AK : AC = AC : AN,

we have AK . A′N : AC. A′N = CA : AN,

and the compound ratio in (α) becomes
(AK. A′N : CA . A′N). (CA. CA′ : AN . A′N),

ie. AK . CA′ : AN . A′N
Thus

(cone or segmt. of cone ABB′) : (cone or segmt. of cone APP′)
= AK . CA′ -. AN . A′N.

But (cone or segment of cone APP′) : (segment APP′)

Therefore, ex aequali,
(cone or segment of cone ABB′) : (segment APP′)

= AK . CA′ : AN . NH′,

so that (spheroid) : (segment APP′)
= HH′ . AK : AN . NH′,

since HH′ = 4CA′.
Hence (segment A′PP′) : (segment APP′)

Further,
(segment APP′) : (cone or segment of cone APP′)

and



(cone or segmt. of cone APP′) : (cone or segmt. of cone A′PP′)
= AN : A′N

= AN. A′N : A′N2.

From the last three proportions we obtain, ex aequali,

But

Hence the ratio in (β) is equal to the ratio
AK . NH . AK . AN, or NH . AN.

Therefore

[If (x, y) be the coordinates of P referred to thbge conjugate diameters AA′ BB′ as axes of x, y, and if 2a, 2b be the lengths
of the diameters respectively, we have, since

(spheroid) − (lesser segment) = (greater segment),

and the above proposition is the geometrical proof of the truth of this equation where x, y are connected by the equation

* The whole of this introductory matter, including the definitions, is transletsd literally from the greek text in order that the terminology of Archimades may be faithfully
represented. When this has once been set out, nothing will be lost by returning to morden phraseology and notation. These will accrdingly be employed, as usual, when we
come to the actual propositions of the treatise.

* A segment of a cone is deined later (p. 104).
* The phraseology of Archimedes here is that associated with the traditional method of application of areas: ει κα…πκρ’ κáσταν αύτ ν παραπ σπ τι

χωρíoνύπερβáλλoν ειδει τετραγών  “if to each of the lines there be applied a space [rectangle] exceeding by a square figure.” Thus A1 is a rectangle of height x applied
to a line a but overlapping it so that the base extends a distance x beyond a.

* The theorem which is here assumed by Archimedes as known can be proved in various ways.
(1) It is easily deduced from Apollonius I. 49 (cf. Apollonius of Perga, pp. liii, 39). If in the figure the tangents at A and P be drawn, the former meeting PV in E and

the latter meeting the axis in T, and if AE, PT meet at C the proposition of Apollonius is to the effect that

CP : PE = p : 2PT,

where p is the parameter of the ordinates to PV.
(2) It may be proved independently as follows.

Let QQ′ meet the axis in O, and let QM, Q′M′, PN be ordinates to the axis.

Then AM : AM′ = QM2 : Q′M′2 = OM2 : 0M′2



whence

so that OM2 = AM .(OM – OM′).

That is to say, (AM – AO)2 = AM . (AM + AM′ – 2AO),
or AO2 = AM . AM′.

And, since QM2 = pa.AM. AM′.

it follows that 

Now

But PV = TO = AN + AO.

Therefore QV2 : QD2 = p : pa.

* This follows from Eucl. XII. 11 and 14 taken together. Cf. On the Sphere and Cylinder I, Lemma 1.
* See the defination of a segment of a cone (áπóτμαμα κώνον) on p.104.
† This proposition was proved by Eudoxus, as stated in the preface to On the Sphere and Cylinder I. Cf. Eucl. XII. 10.
* Cf. the Introduction, chapter III. § 4.
* Archimedes begin Prop. 14 for the spheriod with the remark that, when the cutting plane passes through or is paralal to the axis, the case is clear (δ λoν). Cf.

Prop. 11(3).



ON SPIRALS.

 

“ARCHIMEDES to Dositheus greeting.

Of most of the theorems which I sent to Conon, and of which you ask me from time to time to send you the proofs, the
demonstrations are already before you in the books brought to you by Heracleides; and some more are also contained in that
which I now send you. Do not be surprised at my taking a considerable time before publishing these proofs. This has been
owing to my desire to communicate them first to persons engaged in mathematical studies and anxious to investigate them. In
fact, how many theorems in geometry which have seemed at first impracticable are in time successfully worked out! Now
Conon died before he had sufficient time to investigate the theorems referred to; otherwise he would have discovered and
made manifest all these things, and would have enriched geometry by many other discoveries besides. For I know well that it
was no common ability that he brought to bear on mathematics, and that his industry was extraordinary. But, though many years
have elapsed since Conon’s death, I do not find that any one of the problems has been stirred by a single person. I wish now to
put them in review one by one, particularly as it happens that there are two included among them which are impossible of
realisation * [and which may serve as a warning] how those who claim to discover everything but produce no proofs of the
same may be confuted as having actually pretended to discover the impossible.

What are the problems I mean, and what are those of which you have already received the proofs, and those of which the
proofs are contained in this book respectively, I think it proper to specify. The first of the problems was, Given a sphere, to
find a plane area equal to the surface of the sphere; and this was first made manifest on the publication of the book concerning
the sphere, for, when it is once proved that the surface of any sphere is four times the greatest circle in the sphere, it is clear
that it is possible to find a plane area equal to the surface of the sphere. The second was, Given a cone or a cylinder, to find a
sphere equal to the cone or cylinder; the third, To cut a given sphere by a plane so that the segments of it have to one another an
assigned ratio; the fourth, To cut a given sphere by a plane so that the segments of the surface have to one another an assigned
ratio; the fifth, To make a given segment of a sphere similar to a given segment of a sphere * ; the sixth, Given two segments of
either the same or different spheres, to find a segment of a sphere which shall be similar to one of the segments and have its
surface equal to the surface of the other segment. The seventh was, From a given sphere to cut off a segment by a plane so that
the segment hears to the cone which has the same base as the segment and equal height an assigned ratio greater than that of
three to two. Of all the propositions just enumerated Heracleides brought you the proofs. The proposition stated next after these
was wrong, viz. that, if a sphere be cut by a plane into unequal parts, the greater segment will have to the less the duplicate
ratio of that which the greater surface has to the less. That this is wrong is obvious by what I sent you before; for it included
this proposition: If a sphere be cut into unequal parts by a plane at right angles to any diameter in the sphere, the greater
segment of the surface will have to the less the same ratio as the greater segment of the diameter has to the less, while the
greater segment of the sphere has to the less a ratio less than the duplicate ratio of that which the greater surface has to the less,
but greater than the sesqui- alterate* of that ratio. The last of the problems was also wrong, viz. that, if the diameter of any
sphere be cut so that the square on the greater segment is triple of the square on the lesser segment, and if through the point thus
arrived at a plane be drawn at right angles to the diameter and cutting the sphere, the figure in such a form as is the greater
segment of the sphere is the greatest of all the segments which have an equal surface. That this is wrong is also clear from the
theorems which I before sent you. For it was there proved that the hemisphere is the greatest of all the segments of a sphere
bounded by an equal surface.

After these theorems the following were propounded concerning the cone†. If a section of a right-angled cone [a parabola],
in which the diameter [axis] remains fixed, be made to revolve so that the diameter [axis] is the axis [of revolution], let the
figure described by the section of the right-angled cone be called a conoid. And if a plane touch the conoidal figure and another
plane drawn parallel to the tangent plane cut off a segment of the conoid, let the base of the segment cut off be defined as the
cutting plane, and the vertex as the point in which the other plane touches the conoid. Now, if the said figure be cut by a plane
at right angles to the axis, it is clear that the section will be a circle ; but it needs to be proved that the segment cut off will be
half as large again as the cone which has the same base as the segment and equal height. And if two segments be cut off from
the conoid by planes drawn in any manner, it is clear that the sections will be sections of acuteangled cones [ellipses] if the
cutting planes be not at right angles to the axis; but it needs to be proved that the segments will bear to one another the ratio of
the squares on the lines drawn from their vertices parallel to the axis to meet the cutting planes. The proofs of these
propositions are not yet sent to you.

After these came the following propositions about the spiral,
which are as it were another sort of problem having nothing in common with the foregoing; and I have written out the proofs of
them for you in this book. They are as follows. If a straight line of which one extremity remains fixed be made to revolve at a



uniform rate in a plane until it returns to the position from which it started, and if, at the same time as the straight line revolves,
a point move at a uniform rate along the straight line, starting from the fixed extremity, the point will describe a spiral in the
plane. I say then that the area bounded by the spiral and the straight line which has returned to the position from which it started
is a third part of the circle described with the fixed point as centre and with radius the length traversed by the point along the
straight line during the one revolution. And, if a straight line touch the spiral at the extreme end of the spiral, and another
straight line be drawn at right angles to the line which has revolved and resumed its position from the fixed extremity of it, so
as to meet the tangent, I say that the straight line so drawn to meet it is equal to the circumference of the circle. Again, if the
revolving line and the point moving along it make several revolutions and return to the position from which the straight line
started, I say that the area added by the spiral in the third revolution will be double of that added in the second, that in the
fourth three times, that in the fifth four times, and generally the areas added in the later revolutions will be multiples of that
added in the second revolution according to the successive numbers, while the area bounded by the spiral in the first revolution
is a sixth part of that added in the second revolution. Also, if on the spiral described in one revolution two points be taken and
straight lines be drawn joining them to the fixed extremity of the revolving line, and if two circles be drawn with the fixed
point as centre and radii the lines drawn to the fixed extremity of the straight line, and the shorter of the two lines be produced,
I say that (1) the area bounded by the circumference of the greater circle in the direction of (the part of) the spiral included
between the straight lines, the spiral (itself) and the produced straight line will bear to (2) the area bounded by the
circumference of the lesser circle, the same (part of the) spiral and the straight line joining their extremities the ratio which (3)
the radius of the lesser circle together with two thirds of the excess of the radius of the greater circle over the radius of the
lesser bears to (4) the radius of the lesser circle together with one third of the said excess.

The proofs then of these theorems and others relating to the spiral are given in the present book. Prefixed to them, after the
manner usual in other geometrical works, are the propositions necessary to the proofs of them. And here too, as in the books
previously published, I assume the following lemma, that, if there be (two) unequal lines or (two) unequal areas, the excess by
which the greater exceeds the less can, by being [continually] added to itself, be made to exceed any given magnitude among
those which are comparable with [it and with] one another.”

Proposition 1.

If a point move at a uniform rate along any line, and two lengths be taken on it, they will be proportional to the times of
describing them.

Two unequal lengths are taken on a straight line, and two lengths on another straight line representing the times; and they
are proved to be proportional by taking equimultiples of each length and the corresponding time after the manner of Eucl. Y.
Def. 5.

Proposition 2.

If each of two points on different lines respectively move along them each at a uniform rate, and if lengths be taken,
one on each line, forming pairs, such that each pair are described in equal times, the lengths will be proportionals.

This is proved at once by equating the ratio of the lengths taken on one line to that of the times of description, which must
also be equal to the ratio of the lengths taken on the other line.

Proposition 3.

Given any number of circles, it is possible to find a straight line greater than the sum of all their circumferences.

For we have only to describe polygons about each and then take a straight line equal to the sum of the perimeters of the
polygons.

Proposition 4.

Given two unequal lines, viz. a straight line and the circumference of a circle, it is possible to find a straight line less
than the greater of the two lines and greater than the less.

For, by the Lemma, the excess can, by being added a sufficient number of times to itself, be made to exceed the lesser line.



Thus e.g., if c > l (where c is the circumference of the circle and I the length· of the straight line), we can find a number n
such that

n (c − l ) > l.

Therefore

and 

Hence we have only to divide l into n equal parts and add one of them to l. The resulting line will satisfy the condition.

Proposition 5.

Given a circle with centre O, and the tangent to it at a point A, it is possible to draw from O a straight line OPF,
meeting the circle in P and the tangent in F, such that, if c be the circumference of any given circle whatever,

FP : OP < (arc AP) : c.
Take a straight line, as D, greater than the circumference c. [Prop. 3]

Through O draw OH parallel to the given tangent, and draw through A a line APH, meeting the circle in P and OH

in H, such that the portion PH intercepted between the circle and the line OH may be equal to D*. Join OP and produce it
to meet the tangent in F.

Then

Proposition 6.

Given a circle with centre O, a chord AB less than the diameter, and OM the perpendicular on AB from O, it is possible
to draw a straight line OFP, meeting the chord AB in F and the circle in P, such that

FP : PB = D : E,
where D : E is any given ratio less than BM : MO.

Draw OH parallel to AB, and BT perpendicular to BO meeting OH in T.

Then the triangles BMO, OBT are similar, and therefore
BM : MO = OB : BT,

whence D : E > OB : BT.
Suppose that a line PH (greater than BT) is taken such that

D : E = OB : PH,



and let PH be so placed that it passes through B and P lies on the circumference of the circle, while H is on the line OH*.
(PH will fall outside BT, because PH > BT.) Join OP meeting AB in F.

We now have

Proposition 7.

Given a circle with centre O, a chord AB less than the diameter, and OM the perpendicular on it from O, it is possible
to draw from O a straight line OPF, meeting the circle in P and AB produced in F, such that

FP : PB = D : E,
where D : E is any given ratio greater than BM : MO.

Draw OT parallel to AB, and BT perpendicular to BO meeting OT in T.

In this case,

Take a line PH (less than BT) such that
D : E = OB : PH,

and place PH so that P, H are on the circle and on OT respectively, while HP produced passes through B *.

Then

Proposition 8.

Given a circle with centre O, a chord AB less than the diameter, the tangent at B, and the perpendicular OM from O on
AB, it is possible to draw from O a straight line OFP, meeting the chord AB in F, the circle in P and the tangent in G, such
that

FP : BG = D : E,



where D : E is any given ratio less than BM : MO.

If OT be drawn parallel to AB meeting the tangent at B in T,
BM : MO = OB : BT,

so that D : E < OB : BC,
Take a point O on TB produced such that

D : E = OB : BC,
whence BC > BT.
Through the points O, T, G describe a circle, and let OB be produced to meet this circle in K.

Then, since BO > BT, and OB is perpendicular to CT, it is possible to draw from O a straight line OGQ, meeting CT in G
and the circle about OTC in Q, such that GQ = BK*.

Let OGQ meet AB in F and the original circle in P.

Now CG.GT = OG . GQ;
and OF : OG = BT : GT,
so that OF . GT = OG . BT.

It follows that CG . GT : OF . GT + OG . GQ : OG . BT,
or

Hence OP : OF = BC : CG,
and therefore PF : OP = BG : BC
or

Proposition 9.

Given a circle with centre O, a chord AB less than the diameter, the tangent at B, and the perpendicular OM from O on
AB, it is possible to draw from O a straight line OPGF meeting the circle in P, the tangent in G, and AB produced in F,
such that

FP : BG = D : E,
where D : E is any given ratio greater than BM : MO.

Let OT be drawn parallel to AB meeting the tangent at B in T.



Then

<OB : BT, by similar triangles.

Produce TB to C so that
D : E = OB : BC,

whence BC < BT.

Describe a circle through the points O, T, C, and produce OB to meet this circle in K.

Then, since TB < BC and OB is perpendicular to CT, it is possible to draw from O a line OGQ, meeting CT in G, and the
circle about OTC in Q, such that GQ = BK* Let OQ meet the original circle in P and AB produced in F.

We now prove, exactly as in the last proposition, that

Thus, as before, OP : OF = BC : CG,
and OP : PF = BC : BG,
whence

Proposition 10.

If A1, A2, A3, …An be n lines forming an ascending arithmetical progression in which the common difference is equal to
A1, the least term, then

[Archimedes’ proof of this proposition is given above, p. 107-9, and it is there pointed out that the result is equivalent to

COR. 1. It follows from this proposition that

and also that



[For the proof of the latter inequality see p. 109 above.]

COR. 2. All the results will equally hold if similar figures are substituted for squares.

Proposition 11.

If A1, A2, …An be n lines forming an ascending arithmetical progression  [in which the common difference is equal to
the least term A1*, then

but

[Archimedes sets out the terms side by side in the manner shown in the figure, where BC = An, DE = An − 1,…RS = A1, and
produces DE, FG,.. .RS until they are respectively equal to BC or An, so that EH, GI,…SU in the figure are respectively equal
to A1, A2…An − 1. He further measures lengths BK, DL, FM,…PV along BC, DE, FG,…PQ respectively each equal to RS.

The figure makes the relations between the terms easier to see with the eye, but the use of so large a number of letters
makes the proof somewhat difficult to follow, and it may be more clearly represented as follows.]

It is evident that (An − A1) = An−1.

The following proportion is therefore obviously true, viz.

In order therefore to prove the desired result, we have only to show that

but

I. To prove the first inequality, we have

And



Comparing the right-hand sides of (1) and (2), we see that (n −1)A1
2 is common to both sides, and

(n − 1)A1.An−1 > n A1.An−1,

while, by Prop. 10, Cor. 1,

It follows therefore that

and hence the first part of the proposition is proved.

II. We have now, in order to prove the second result, to show that

The right-hand side is equal to

Comparing this expression with the right-hand side of (1) above, we see that (n−1)A1
2 is common to both sides, and

(n − 1)A1. An-1>(n − 2)A1. An−1,

while, by Prop. 10, Cor. 1,



Hence

and the second required result follows.

COR. The remits in the above proposition are equally true if similar figures be substituted for squares on the several
lines.

DEFINITIONS.

1. If a straight line drawn in a plane revolve at a uniform rate about one extremity which remains fixed and return to the
position from which it started, and if, at the same time as the line revolves, a point move at a uniform rate along tb straight line
beginning from the extremity which remains fixed, the point will describe a spiral ( λιξ)in the plane.

2. Let the extremity of the straight line which remains fixed while the straight line revolves be called the origin * (áρχá)
of the spiral.

3. And let the position of the line from which the straight line began to revolve be called the initial line * in the revolution
(áρχá τâs περιϕoρâs).

4. Let the length which the point that moves along the straight line describes in one revolution be called the first distance,
that which the same point describes in the second revolution the second distance, and similarly let the distances described in
further revolutions be called after the number of the particular revolution.

5. Let the area bounded by the spiral described in the first revolution and the first distance be called the first area, that
bounded by the spiral described in the second revolution and the second distance the second area, and similarly for the rest in
order.

6. If from the origin of the spiral any straight line be drawn, let that side of it which is in the same direction as that of the
revolution be called forward (πρoaγoύμ νa), and that which is in the other direction backward ( πòµενa).

7. Let the circle drawn with the origin as centre and the first distance as radius be called the first circle, that drawn with
the same centre and twice the radius the second circle, and similarly for the succeeding circles.

Proposition 12.

If any number of straight lines drawn from the origin to meet the spiral make equal angles with one another, the lines
will be in arithmetical progression.

[The proof is obvious]

Proposition 13.

If a straight line touch the spiral, it will touch it in one point only.

Let O be the origin of the spiral, and BC a tangent to it.

If possible, let BC touch the spiral in two points P, Q. Join OP, OQ, and bisect the angle POQ by the straight line OR
meeting the spiral in R.



Then [Prop. 12] OR is an arithmetic mean between OP and OQ, or
OP + OQ = 2OR.

But in any triangle POQ, if the bisector of the angle POQ meets PQ in K,
OP + OQ >2OK*.

Therefore OK < OR, and it follows that some point on BG between P and Q lies within the spiral. Hence BC cuts the
spiral; which is contrary to the hypothesis.

Proposition 14.

If O be the origin, and P, Q two points on the first turn of the spiral, and if OP, OQ produced meet the ‘first circle’
AKP′Q′ in P′, Q′ respectively, OA being the initial line, then

OP : OQ = (arc AKP′):(arc AKQ′
For, while the revolving line OA moves about O, the point A on it moves uniformly along the circumference of the circle

AKP′Q′, and at the same time the point describing the spiral moves uniformly along OA.

Thus, while A describes the arc AKP′, the moving point on OA describes the length OP, and, while A describes the arc
AKQ′, the moving point on OA describes the distance OQ.

Hence OP : OQ = c +(arc AKP′):(arc AKQ′). [Prop. 2]

Proposition 15.

If P, Q be points on the second turn of the spiral, and OP, OQ meet the ‘first circle’ AKP′Q′ in P′, Q′, as in the last
proposition, and if c be the circumference of the first circle, then

OP : OQ = c +(arc AKP′): c +(arc AKQ′).

For, while the moving point on OA describes the distance OP, the point A describes the whole of the circumference of the
‘first circle’ together with the arc AKP′; and, while the moving point on OA describes the distance OQ, the point A describes
the whole circumference of the ‘first circle’ together with the arc AKQ′.

COR. Similarly, if P, Q are on the nth turn of the spiral,

OP : OQ = (n − 1)c+(arc AKP′):(n-1)c + (arc AKQ′).

Propositions 16, 17.

If BC be the tangent at P, any point on the spiral, PC being the ‘forward’ part of BC, and if OP be joined, the angle
OPC is obtuse while the angle OPB is acute.

I. Suppose P to be on the first turn of the spiral.

Let OA be the initial line, AKP′ the ‘first circle’. Draw the circle DLP with centre O and radius OP, meeting OA in D. This



circle must then, in the ‘forward’ direction from P,

fall within the spiral, and in the ‘backward’ direction outside it, since the radii vectores of the spiral are on the ‘forward’ side
greater, and on the ‘backward’ side less, than OP. Hence the angle OPG cannot be acute, since it cannot be less than the angle
between OP and the tangent to the circle at P, which is a right angle.

It only remains therefore to prove that OPG is not a right angle.

If possible, let it be a right angle. BG will then touch the circle at P.

Therefore [Prop. 5] it is possible to draw a line OQC meeting the circle through P in Q and BC in C, such that

Suppose that OC meets the spiral in R and the ‘first circle’ in R′; and produce OP to meet the ‘first circle’ in P′.

From (1) it follows, componendo, that

But this is impossible, because OQ = OP, and OR < OC.

Hence the angle OPC is not a right angle. It was also proved not to be acute.

Therefore the angle OPC is obtuse, and the angle OPB consequently acute.

II. If P is on the second, or the nth turn, the proof is the same, except that in the proportion (1) above we have to substitute
for the arc DLP an arc equal to , where p is the perimeter of the circle



DLP through P. Similarly, in the later steps, p or(n − 1) p will be added to each of the arcs DLQ and DLP, and c or (n − 1)c to
each of the arcs AKR′, AKP′, where c is the circumference of the ‘first circle’ AKP′.

Propositions 18, 19.

I.  If OA be the initial line, A the end of the first turn of the spiral, and if the tangent to the spiral at A be drawn, the
straight line OB drawn from O perpendicular to OA will meet the said tangent in some point B} and OB will be equal to the
circumference of the ‘first circle’.

II.  If A′ be the end of the second turn, the perpendicular OB will meet the tangent at A′ in some point B′, and OB′ will
be equal to 2 (circumference of ‘second circle’).

III.  Generally, if An be the end of the nth turn, and OB meet the tangent at An in Bn, then
OBn = ncn

where cn is the circumference of the ‘nth circle’.

I.  Let AKC be the ‘first circle’. Then, since the ‘backward’ angle between OA and the tangent at A is acute [Prop. 16], the
tangent will meet the ‘first circle’ in a second point C. And the angles CAO, BOA are together less than two right angles;
therefore OB will meet AG produced in some point B.

Then, if c be the circumference of the first circle, we have to prove that
OB = c.

If not, OB must be either greater or less than c.

(1)  If possible, suppose OB > c.

Measure along OB a length OD less than OB but greater than c.

We have then a circle AKG, a chord AC in it less than the diameter, and a ratio AO: OD which is greater than the ratio AO :
OB or (what is, by similar triangles, equal to it) the ratio of AC to the perpendicular from 0 on AC. Therefore [Prop. 7] we
can draw a straight line OPF, meeting the circle in P and CA produced in F, such that

FP : PA = AO : OD.
Thus, alternately, 

since (arc PA) > PA, and OD > c.

Componendo,



where OF meets the spiral in Q. [Prop. 15]

Therefore, since OA = OP, FO < OQ; which is impossible.

Hence  OB c.

(2)  If possible, suppose OB < c.

Measure OE along OB so that OE is greater than OB but less than c.

In this case, since the ratio AO : OE is less than the ratio AO : OB (or the ratio of  to the perpendicular from O on AC), we
can [Prop. 8] draw a line OF′P′G, meeting AC in F′, the circle in P′, and the tangent at A to the circle in G, such that

F′P′ : AG = AO : OE.

Let OP′G cut the spiral in Q′

Then we have, alternately,

because AG > (arc AP′), and OE < c.

Therefore

But this is impossible, since OA = OP′, and OQ′ < OF′.

Hence OB c.

Since therefore OB is neither greater nor less than c,
OB = c.

II.  Let A′K′C′ be the ‘second circle,’ A′C′ being the tangent to the spiral at A′ (which will cut the second circle, since the
‘backward’ angle OA′C′ is acute). Thus, as before, the perpendicular OB′ to OA′ will meet A′C′ produced in some point B′.

If then c′ is the circumference of the ‘second circle,’ we have to prove that OB′ = 2c′.

For, if not, OB′ must be either greater or less than 2c′. (1) If possible, suppose OB′ > 2c′.

Measure OD′ along OB′ so that OB′ is less than OB′ but greater than 2c′.
Then, as in the case of the ‘first circle’ above, we can draw a straight line OPF meeting the ‘second circle’ in P and C′A′

produced in F, such that
FP : PA′ = A′O : OD′.

Let OF meet the spiral in Q.

We now have, since A′O = PO,



because (arc A′P) > A′P and OD′ > 2c′.
Therefore

Hence FO < OQ; which is impossible.

Thus  OB′ 2c′

Similarly, as in the case of the ‘first circle’, we can prove that
OB′ 2c′

Therefore OB′ = 2C′

III. Proceeding, in like manner, to the ‘third’ and succeeding circles, we shall prove that
OBn = ncn.

Proposition 20.

I. If P be any point on the first turn of the spiral and OT be drawn perpendicular to OP, OT will meet the tangent at P
to the spiral in some point T; and, if the circle drawn with centre 0 and radius OP meet the initial line in K, then OT is
equal to the arc of this circle betiueen K and P measured in the ‘forward’ direction of the spiral.

II. Generally, if P be a point on the nth turn, and the notation be as before, while p represents the circumference of the
circle with radius OP,

OT = (n-1)p + arc KP(measured ‘forward’).

I. Let P be a point on the first turn of the spiral, OA the initial line, PR the tangent at P taken in the ‘backward’ direction.

Then [Prop. 16] the angle OPR is acute. Therefore PR meets the circle through P in some point R; and also OT will meet
PR produced in some point T.

If now OT is not equal to the arc KRP, it must be either greater or less.

(1)  If possible, let OT be greater than the arc KRP.

Measure OU along OT less than OT but greater than the arc KRP.

Then, since the ratio PO : OU is greater than the ratio PO : OT, or (what is, by similar triangles, equal to it) the ratio of 
PR to the perpendicular from O on PR, we can draw a line OQF, meeting the circle in Q and RP produced in F, such that



Let OF meet the spiral in Q′.

We have then

Componendo,

But QO = OP.

Therefore FO < OQ′; which is impossible.

Hence  OT (arc KRP).

(2)  The proof that OT  (arc KRP) follows the method of Prop. 18, I. (2), exactly as the above follows that of Prop. 18, I.
(1).

Since then OT is neither greater nor less than the arc KRP, it is equal to it.

II.  If P be on the second turn, the same method shows that

OT = p+(arc KRP);
and, similarly, we have, for a point P on the nth turn,

OT = (n-1)p + (arc KRP).

Propositions 21, 22, 23.

Given an area bounded by any arc of a spiral and the lines joining the extremities of the arc to the origin, it is possible
to circumscribe about the area one figure, and to inscribe in it another figure, each consisting of similar sectors of circles,
and such that the circumscribed figure exceeds the inscribed by less than any assigned area.

For let BC be any arc of the spiral, O the origin. Draw the circle with centre O and radius OC, where C is the ‘forward’
end of the arc.

Then, by bisecting the angle BOG, bisecting the resulting angles, and so on continually, we shall ultimately arrive at an
angle COr cutting off a sector of the circle less than any assigned area. Let COr be this sector.

Let the other lines dividing the angle BOG into equal parts meet the spiral in P, Q, and let Or meet it in R. With 0 as centre
and radii OB, OP, OQ, OR  respectively describe arcs of circles Bp′, bBq′, pQr′, qRc′, each meeting the adjacent radii as
shown in the figure. In each case the arc in the ‘forward’ direction from each point will fall within, and the arc in the
‘backward’ direction outside, the spiral.

We have now a circumscribed figure and an inscribed figure each consisting of similar sectors of circles. To compare their
areas, we take the successive sectors of each, beginning from OC, and compare them.

The sector OCr in the circumscribed figure stands alone.



And

while the sector OBp′ in the inscribed figure stands alone.

Hence, if the equal sectors be taken away, the difference between the circumscribed and inscribed figures is equal to the
difference between the sectors OCr and OBp′; and this difference is less than the sector OCr, which is itself less than any
assigned area.

The proof is exactly the same whatever be the number of angles into which the angle BOC is divided, the only difference
being that, when the arc begins from the origin, the smallest sectors OPb, OPq′ in each figure are equal, and there is therefore
no inscribed sector standing by itself, so that the difference between the circumscribed and inscribed figures is equal to the
sector OCr itself.

Thus the proposition is universally true.

COR. Since the area bounded by the spiral is intermediate in magnitude between the circumscribed and inscribed figures, it
follows that

(1) a figure can be circumscribed to the area such that it exceeds the area by less than any assigned space,
(2) a figure can be inscribed such that the area exceeds it by less than any assigned space.

Proposition 24.

The area bounded by the first turn of the spiral and the initial line is equal to one-third of the ‘first circle’ 
 where the spiral is r = aθ].

[The same proof shows equally that, if OP be any radius vector in the first turn of the spiral, the area of the portion of
the spiral bounded thereby is equal to one-third of that sector of the circle drawn with radius OP which is bounded by the
initial line and OP, measured in the ‘forward’ direction from the initial line.]

Let O be the origin, OA the initial line, A the extremity of the first turn.

Draw the ‘first circle’, i.e. the circle with O as centre and OA as radius.

Then, if C1 be the area of the first circle, R1 that of the first turn of the spiral bounded by OA, we have to prove that
R1= C1

For, if not, R1 must be either greater or less than C1.

I.  If possible, suppose R1= C1.

We can then circumscribe a figure about R1 made up of similar sectors of circles such that, if F be the area of this figure,
F − R1< C1−R1,

whence F< C1.

Let OP, OQ,… be the radii of the circular sectors, beginning from the smallest. The radius of the largest is of course OA.



The radii then form an ascending arithmetical progression in which the common difference is equal to the least term OP. If
n be the number of the sectors, we have [by Prop. 10, Cor. 1]

n. OA2<3(OP2+OQ2+ … +OA2)

and, since the similar sectors are proportional to the squares on their radii, it follows that
C1<3F,

or F<3C1,

But this is impossible, since F was less than C1.

Therefore  R1 C1.

II. If possible, suppose  R1> C1.

We can then inscribe a figure made up of similar sectors of circles such that, if f be its area,
R1-f<R1− C1

whence f> C1.

If there are (n − 1) sectors, their radii, as OP, OQ, …, form an ascending arithmetical progression in which the least term
is equal to the common difference, and the greatest term, as OY, is equal to (n − 1) OP.

Thus [Prop. 10, Cor.1]
n.OA2>3(OP2 + OQ2+ … +OY2

whence C1>3f,
or f> C1;
which is impossible, since f> C1

Therefore  R1  C1

Since then R1 is neither greater nor less than C1,
R1 = C1

[Archimedes does not actually find the area of the spiral cut off by the radius vector OP, where P is any point on the first
turn; but, in order to do this, we have only to substitute in the above proof the area of the sector KLP of the circle drawn with O
as centre and OP as radius for the area C1 of the ‘first circle’, while the two figures made up of similar sectors have to be
circumscribed about and inscribed in the portion OEP of the spiral. The same method of proof then applies exactly, and the
area of OEP is seen to be  (sector KLP).



We can prove also, by the same method, that, if P be a point on the second, or any later turn, as the nth, the complete area
described by the radius vector from the beginning up to the time when it reaches the position OP is, if C denote the area of the
complete circle with O as centre and OP as radius, (C + sector KLP) or  respectively.

The area so described by the radius vector is of course not the same thing as the area bounded by the last complete turn of
the spiral ending at P and the intercepted portion of the radius vector OP. Thus, suppose R1 to be the area bounded by the first
turn of the spiral and 0A1 (the first turn ending at A1 on the initial line), R2 the area added to this by the second complete turn
ending at A2 on the initial line, and so on. R1 has then been described twice by the radius vector when it arrives at the position
0A2; when the radius vector arrives at the position 0A3, it has described R1 three times, the ring R2 twice, and the ring R3 once;
and so on.

Thus, generally, if Cn denote the area of the ‘nth circle’, we shall have
nCn = Rn + 2Rn-1 + 3Rn-2 + … + nR1,

while the actual area bounded by the outside, or the complete nth, turn and the intercepted portion of OAn will be equal to
Rn + Rn-1 + Rn-2 + … + R1.

It can now be seen that the results of the later Props. 25 and 26 may be obtained from the extension of Prop. 24 just given.

To obtain the general result of Prop. 26, suppose BC to be an arc on any turn whatever of the spiral, being itself less than a
complete turn, and suppose B to be beyond An the extremity of the nth complete turn, while C is ‘forward’ from B.

Let  be the fraction of a turn between the end of the nth turn and the point B.

Then the area described by the radius vector up to the position OB (starting from the beginning of the spiral) is equal to

Also the area described by the radius vector from the beginning up to the position OC is

The area bounded by 0B, OC and the portion BEC of the spiral is equal to the difference between these two expressions;
and, since the circles are to one another as OB2 to OC2, the difference may be expressed as

But, by Prop. 15, Cor.,



so that

The result of Prop. 25 is a particular case of this, and the result of Prop. 27 follows immediately, as shown under that
proposition.]

Proposition 25, 26, 27.

[Prop. 25.] If A2 be the end of the second turn of the spiral, the area bounded by the second turn and OA2 is to the area
of the ‘second circle’ in the ratio of 7 to 12, being the ratio of  to  where r1, r2 are the radii of the
‘first’ and ‘second’ circles respectively.

[Prop. 26.] If BC be any arc measured in the ‘forward’ direction on any turn of a spiral, not being greater than the
complete turn, and if a circle be drawn with O as centre and OC as radius meeting OB in B′, then

[Prop. 27.] If R1 be the area of the first turn of the spiral bounded by the initial line, R2 the area of the ring added by
the second complete turn, Rs that of the ring added by the third turn, and so on, then

R3 = 2R2, R4 = 3R2, R5 = 4R2, …, Rn = (n −1) R2.

Also R2 = 6 R1

[Archimedes’ proof of Prop. 25 is, mutatis mutandis, the same as his proof of the more general Prop. 26. The latter will
accordingly be given here, and applied to Prop. 25 as a particular case.]

Let BG be an arc measured in the ‘forward’ direction on any turn of the spiral, GKB′ the circle drawn with O as centre and
OC as radius.

Take a circle such that the square of its radius is equal to OC.OB, and let σ be a sector in it whose central angle is equal to
the angle BOG.

Thus σ : (sector OB′C) = {OC.OB + (OC −OB)2}:OC2,



and we have therefore to prove that
(area of spiral OBC) = σ.

For, if not, the area of the spiral OBG (which we will call S) must be either greater or less than σ.

I.  Suppose, if possible, S < σ

Circumscribe to the area S a figure made up of similar sectors of circles, such that, if F be the area of the figure,
F−S<σ−S,

whence F<σ.
Let the radii of the successive sectors, starting from OB, be OP, OQ,…OC . Produce OP, OQ, … to meet the circle GKB′,

…

If then the lines OB, OP, OQ, … OG be n in number, the number of sectors in the circumscribed figure will be (n − 1), and
the sector OB′C will also be divided into (n − 1) equal sectors. Also OB, OP, OQ, … OC  will form an ascending arithmetical
progression of n terms.

Therefore [see Prop. 11 and Cor.]

Hence, since similar sectors are as the squares of their radii,
(sector OB′C):F<(sector OB′C) :σ

so that F > σ.

But this is impossible, because F < σ.

Therefore S σ.

II. Suppose, if possible, S > σ.

Inscribe in the area S a figure made up of similar sectors of circles such that, if f be its area,
S − f < S − σ,

whence f > σ.

Suppose OB, OP, … OY to be the radii of the successive sectors making up the figure f, being (n − 1) in number.

We shall have in this case [see Prop. 11 and Cor.]

whence (sector OB′C):f > (sector OB′C):ρ,



so that f < σ
But this is impossible, because f > σ.

Therefore S σ

Since then S is neither greater nor less than σ, it follows that
S = σ.

In the particular case where B coincides with A1 the end of the first turn of the spiral, and C with A2, the end of the second
turn, the sector OB′G becomes the complete ‘second circle,’ that, namely, with OA2 (or r2) as radius.

Thus
(area of spiral bounded by OA2) : (‘ second circle ’)

Again, the area of the spiral bounded by OA2 is equal to R1 + R2 (i.e. the area bounded by the first turn and OA1, together with
the ring added by the second turn). Also the ‘second circle’ is four times the ‘first circle,’ and therefore equal to 12R1.

Hence (R1 + R2) : 12R1 = 7:12,

or R1 + R2 = 7R1.

Thus

Next, for the third turn, we have

and

therefore R1 + R2 + R3 = 19R1,

and, by (1) above, it follows that

and so on.

Generally, we have

and

Therefore

Dirimendo,



Similarly
Rn−1 : (R1 + R2 + … + Rn-2) = 6 (n − 2) : {3 (n − 2)(n − 3) + 1},

from which we derive

Combining (α) and (β), we obtain
Rn : Rn−1 = (n−1) : (n−2).

Thus

R2, R3, R4, … Rn are in the ratio of the successive numbers 1, 2, 3 … (n − 1).

Proposition 28.

If O be the origin and BC any arc measured in the ‘forward’ direction on any turn of the spiral, let two circles be
drawn (1) with centre O, and radius OB, meeting OC in C′, and (2) with centre O and radius OC, meeting OB produced in B′.
Then, if E denote the area bounded by the larger circular arc B′C, the line B′B, and the spiral BC, while F denotes the area
bounded by the smaller arc BC′, the line CC′ and the spiral BC,

E : F = {OB + (OC − OB)} : {OB + (OC − OB)}.

Let σ denote the area of the lesser sector OBC′; then the larger sector OB′C is equal to σ + F + E.

Thus [Prop. 26]

whence

.

Again (σ + F + E) : σ = OC2 : OB2.

Therefore, by the first proportion above, ex aequali,



(σ + F) : σ = {OC.OB + (OC − OB)2} : OB2,

whence

Combining this with (2) above, we obtain

* Heiberrg reads τ λοs δ  ποθεσóμενa, but F has τ λονs, so that the true reading is perhaps τ λονs δ  ποτiδεóµενa. The meaning appears to be simply ‘wrong’.
* τò δοθ ν τµâµa σϕaτþas τ  δοθ ντι τµáµaτι σϕaτþas òμοιώσuι, i.e. to make a segment of a sphere similar to one given segment and equal in content to another

given segment.[Cf.On the Sphere and Cylinder, II.5.]
* (λóγoυ) μειξoνa  μòλιoν βo , őν χει κ . τ . λ., i.e. a ratio greater than (the ratio of the surfaces) . See On the Sphere and Cylinder, II. 8.
† This should be presumably the conoid not ‘the cone.’
* This construction, which is assumed without any explanation as to how it is to be effected, is described in the original Greek thus: “let PH be placed (K ίσθω) equal

to D, verging (ν ύoυσa) towards A.” This is the usual phraseology used in the type of problem known by the name of με σιs.
* The Greek phrase is “let PH be placed between the circumference and the straight line (OH) through B. “ The construction is assumed, like the similar one in the

last proposition.
* PH is described in the Greek as ν ύoυσαν πί (υerging to) the point B, As before the construction is assumed.
*  The Greek words used are : “it is possible to pace another [straight line] GQ equall to verging (ν ύoυσαν) towards O.” This particular νε σιs is discussed by

Pappus (p.298, ed. Hultsch).See the introduction, chapter v.
* See the note on the last proposition.
* The proposition is true even when the common difference is not equall to A1, and is assumed in the more general form in Props. 25 and 26. But, as Archimedes’

proof assumes the equallity of A1 and the common difference, the words are here instead to prevent misapprehension.
* The literal translation would of course be the “begining of the spiral” and “the beginning of the revolution” respectively. But the modern names will be more suitable

for use later on, and are therefore employed here.
* This is assumed as a known proposition; but it is easily proved.
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“I POSTULATE the following:

1. Equal weights at equal distances are in equilibrium, and equal weights at unequal distances are not in equilibrium but
incline towards the weight which is at the greater distance.

2. If, when weights at certain distances are in equilibrium, something be added to one of the weights, they are not in
equilibrium but incline towards that weight to which the addition was made.

3. Similarly, if anything be taken away from one of the weights, they are not in equilibrium but incline towards the weight
from which nothing was taken.

4. When equal and similar plane figures coincide if applied to one another, their centres of gravity similarly coincide.

5. In figures which are unequal but similar the centres of gravity will be similarly situated. By points similarly situated in
relation to similar figures I mean points such that, if straight lines be drawn from them to the equal angles, they make equal
angles with the corresponding sides.

6. If magnitudes at certain distances be in equilibrium, (other) magnitudes equal to them will also be in equilibrium at the
same distances.

7. In any figure whose perimeter is concave in (one and) the same direction the centre of gravity must be within the
figure”.

Proposition 1.

Weights which balance at equal distances are equal.
For, if they are unequal, take away from the greater the difference between the two. The remainders will then not balace

[Post. 3]; which is bsurd.

Therefore the weights cannot be unequal.

Proposition 2.

Unequal weights at equal distances will not balance but will incline towards the greater weight.

For take away from the greater the difference between the two. The equal remainders will therefore balance [Post. 1].
Hence, if we add the difference again, the weights will not balance but incline towards the greater [Post. 2].

Proposition 3.

Unequal weights will balance at unequal distances, the greater weight being at the lesser distance.

Let A, B be two unequal weights (of which A is the greater) balancing about C at distances AC, BG respectively.



Then shall AC be less than BC. For, if not, take away from A the weight (A − B.) The remainders will then incline towards
B [Post 3]. But this is impossible, for (1) if AC = CB, the equal remainders will balance, or (2) if AC > CB, they will incline
towards A at the greater distance [Post 1].

Hence AC < CB.

Conversely, if the weights balance, and AC < CB, then A > B.

Proposition 4.

If two equal weights have not the same centre of gravity, the centre of gravity of both taken together is at the middle
point of the line joining their centres of gravity.

[Proved from Prop. 3 by reductio ad absurdum . Archimedes assumes that the centre of gravity of both together is on the
straight line joining the centres of gravity of each, saying that this had been proved before (πρoδ δεικτaι). The allusion is no
doubt to the lost treatise On levers (π ρì ξνγ ν).]

Proposition 5.

If three equal magnitudes have their centres of gravity on a straight line at equal distances, the centre of gravity of the
system will coincide with that of the middle magnitude.

[This follows immediately from Prop. 4.]

COR 1. The same is true of any odd number of magnitudes if those which are at equal distances from the middle one
are equal, while the distances between their centres of gravity are equal.

COR. 2. If there be an even number of magnitudes with their centres of gravity situated at equal distances on one
straight line, and if the two middle ones be equal, while those which are equidistant from them (on each side) are equal
respectively, the centre of gravity of the system is the middle point of the line joining the centres of gravity of the two
middle ones.

Proposition 6, 7.

Two magnitudes, whether commensurable [Prop. 6] or incommensurable [Prop. 7], balance at distances reciprocally
proportional to the magnitudes.

I. Suppose the magnitudes A, B to be commensurable, and the points A, B to be their centres of gravity. Let DE be a
straight line so divided at C that

A : B = DC : CE.

We have then to prove that, if A be placed at E and B at D, C is the centre of gravity of the two taken together.



Since A, B are commensurable, so are DC, GE . Let N be a common measure of DC, CE . Make DH, DK each equal to CE,
and EL (on CE produced) equal to CD. Then EH = CD, since DH = CE. Therefore LH is bisected at E, as HK is bisected at D.

Thus LH, HK must each contain N an even number of times.

Take a magnitude O such that O is contained as many times in A as N is contained in LH, whence
A : O = LH : N.

But

Hence, ex aequali, B : O = HK : N, or O is contained in B as many times as N is contained in HK.

Thus O is a common measure of A, B .

Divide LH, HK into parts each equal to N, and A, B into parts each equal to O. The parts of A will therefore be equal in
number to those of LH, and the parts of B equal in number to those of HK. Place one of the parts of A at the middle point of
each of the parts N of LH, and one of the parts of B at the middle point of each of the parts N of HK.

Then the centre of gravity of the parts of A placed at equal distances on LH will be at E, the middle point of LH [Prop. 5,
Cor. 2], and the centre of gravity of the parts of B placed at equal distances along HK will be at D, the middle point of HK.

Thus we may suppose A itself applied at E, and B itself applied at D.

But the system formed by the parts O of A and B together is a system of equal magnitudes even in number and placed at
equal distances along LK. And, since LE = CD, and EC = DK, LC= CK, so that C is the middle point of LK. Therefore C is the
centre of gravity of the system ranged along LK.

Therefore A acting at E and B acting at D balance about the point C.

II. Suppose the magnitudes to be incommensurable, and let them be (A + a) and B respectively. Let DE be a line divided at
C so that

(A + a) : B5 = DC : CE.

Then, if (A + a) placed at E and B placed at D do not balance about C, (A + a) is either too great to balance B, or not great
enough.

Suppose, if possible, that (A + a) is too great to balance B. Take from (A + a) a magnitude a smaller than the deduction
which would make the remainder balance B, but such that the remainder A and the magnitude B are commensurable.

Then, since A, B are commensurable, and
A : B < DC : CE,

A and B will not balance [Prop. 6], but D will be depressed.

But this is impossible, since the deduction a was an insufficient deduction from (A + a) to produce equilibrium, so that E
was still depressed.



Therefore (A + a) is not too great to balance B; and similarly it may be proved that B is not too great to balance (A + a).

Hence (A + a), B taken together have their centre of gravity at C.

Proposition 8.

If AB be a magnitude whose centre of gravity is C and AD a part of it whose centre of gravity is F, then the centre of
gravity of the remaining part will be a point G on FG produced such that

GC : CF = (AD) : (DE).

For, if the centre of gravity of the remainder (DE) be not G let it be a point H. Then an absurdity follows at once from
Props. 6, 7.

Proposition 9.

The centre of gravity of any parallelogram lies on the straight line joining the middle points of opposite sides.
Let ABCD be a parallelogram, and let EF join the middle points of the opposite sides AD, BC.

If the centre of gravity does not lie on EF, suppose it to be H, and draw HK parallel to AD or BC meeting EF in K.

Then it is possible, by bisecting ED, then bisecting the halves, and so on continually, to arrive at a length EL less

than KH. Divide both AE and ED into parts each equal to EL, and through the points of division draw parallels to AB or
CD.

We have then a number of equal and similar parallelograms, and, if any one be applied to any other, their centres of gravity
coincide [Post. 4]. Thus we have an even number of equal magnitudes whose centres of gravity lie at equal distances along a
straight line. Hence the centre of gravity of the whole parallelogram will lie on the line joining the centres of gravity of the two
middle parallelograms [Prop. 5, Cor. 2].

But this is impossible, for H is outside the middle parallelograms.

Therefore the centre of gravity cannot but lie on EF.

Proposition 10.

The centre of gravity of a parallelogram is the point of intersection of its diagonals.
For, by the last proposition, the centre of gravity lies on each of the lines which bisect opposite sides. Therefore it is at the

point of their intersection; and this is also the point of intersection of the diagonals.

Alternative proof
Let ABCD be .the given parallelogram, and BD a diagonal. Then the triangles ABD, CDB are equal and similar, so that

[Post. 4], if one be applied to the other, their centres of gravity will fall one upon the other.

Suppose F to be the centre of gravity of the triangle ABD. Let G be the middle point of BD. Join FG and produce it to H, so
that FG = GH.



If we then apply the triangle ABD to the triangle CDB so that AD falls on CB and AB on CD, the noint F will fall on H.

But [by Post. 4] F will fall on the centre of gravity of CDB. Therefore H is the centre of gravity of GDB.

Hence, since F, H are the centres of gravity of the two equal triangles, the centre of gravity of the whole parallelogram is at
the middle point of FH, i.e. at the middle point of BD, which is the intersection of the two diagonals.

Proposition 11.

If abc, ABC be two similar triangles, and g, G two points in them similarly situated with respect to them respectively,
then, if g be the centre of gravity of the triangle abc, G must be the centre of gravity of the triangle ABC.

Suppose ab : bc : ca = AB : BC : CA.

The proposition is proved by an obvious reductio ad dbsurdum . For, if G be not the centre of gravity of the triangle ABC,
suppose H to be its centre of gravity.

Post. 5 requires that g, H shall be similarly situated with respect to the triangles respectively; and this leads at once to the
absurdity that the angles HAB, GAB are equal.

Proposition 12.

Given two similar triangles abc, ABC, and d, D the middle points of be, BC respectively, then, if the centre of gravity of
abc lie on ad, that of ABC will lie on AD.

Let g be the point on ad which is the centre of gravity of abc.

Take G on AD such that
ad : ag = AD : AG,

and join gb, gc, GB, GC.

Then, since the triangles are similar, and bd, BD are the halves of bc, BC respectively,
ab : bd = AB : BD,

and the angles abd, ABD are equal.



Therefore the triangles abd, ABD are similar, and
∠bad = ∠BAD.

Also ba : ad = BA : AD,
while, from above, ad : ag = AD : AG
Therefore ba:ag = BA : AG, while the angles bag, BAG are equal.

Hence the triangles bag, BAG are similar, and
∠abg = ∠ABG

And, since the angles abd, ABD are equal, it follows that
∠gcd = ∠GBD.

In exactly the same manner we prove that

Therefore g, G are similarly situated with respect to the triangles respectively; whence [Prop. 11] G is the centre of gravity
of ABC.

Proposition 13.

In any triangle the centre of gravity lies on the straight line joining any angle to the middle point of the opposite side.

Let ABC be a triangle and D the middle point of BC. Join AD. Then shall the centre of gravity lie on AD.

For, if possible, let this not be the case, and let H be the centre of gravity. Draw HI parallel to CB meeting AD in I.
Then, if we bisect DC, then bisect the halves, and so on, we shall at length arrive at a length, as DE, less than HI.

Divide both BD and DG into lengths each equal to DE, and through the points of division draw lines each parallel to DA
meeting BA and AC in points as K, L, M and N, P, Q respectively.

Join MN, LP, KQ, which lines will then be each parallel to BC.

We have now a series of parallelograms as FQ, TP, SN, and AD bisects opposite sides in each. Thus the centre of gravity
of each parallelogram lies on AD [Prop. 9], and therefore the centre of gravity of the figure made up of them all lies on AD.

Let the centre of gravity of all the parallelograms taken together be O. Join OH and produce it; also draw CV parallel to DA
meeting OH produced in V.

Now, if n be the number of parts into which AC is divided,

Δ ADC : (sum of triangles on AN,NP,…)



Similarly

Δ ABD : (sum of triangles on AM,ML,…)= AB : AM.

And AC : AN = AB : AM.

It follows that

Suppose O V produced to X so that
Δ ABC : (sum of small Δs) = XO : OH,

whence, dividendo,

(sum of parallelograms) : (sum of small Δs) = XH : HO.
Since then the centre of gravity of the triangle ABC is at H, and the centre of gravity of the part of it made up of the
parallelograms is at O, it follows from Prop. 8 that the centre of gravity of the remaining portion consisting of all the small
triangles taken together is at X.

But this is impossible, since all the triangles are on one side of the line through X parallel to AD.

Therefore the centre of gravity of the triangle cannot but lie on AD.

Alternative proof.
Suppose, if possible, that H, not lying on AD, is the centre of gravity of the triangle ABC. Join AH, BH, CH. Let E, F be the

middle points of CA, AB respectively, and join DE, EF, FD. Let EF meet AD in M.

Draw FK, EL parallel to AH meeting BH, GH in K, L respectively. Join KD, HD, LD, KL. Let KL meet DH in N, and join
MN.

Since DE is parallel to AB, the triangles ABC, EDG are similar.

And, since GE = EA, and EL is parallel to AH, it follows that CL = LH. And CD = DB. Therefore BH is parallel to DL.

Thus in the similar and similarly situated triangles ABG, EDC the straight lines AH, BH are respectively parallel to EL, DL
; and it follows that H, L are similarly situated with respect to the triangles respectively.

But H is, by hypothesis, the centre of gravity of ABC. Therefore L is the centre of gravity of EDG. [Prop. 11]

Similarly the point K is the centre of gravity of the triangle FBD.

And the triangles FBD, EDG are equal, so that the centre of gravity of both together is at the middle point of KL, i.e. at the
point N.

The remainder of the triangle ABC, after the triangles FBD, EDG are deducted, is the parallelogram AFDE, and the centre
of gravity of this parallelogram is at M, the intersection of its diagonals.



It follows that the centre of gravity of the whole triangle ABC must lie on MN; that is, MN must pass through H, which is
impossible (since MN is parallel to AH).

Therefore the centre of gravity of the triangle ABC cannot but lie on AD.

Proposition 14.

It follows at once from the last proposition that the centre of gravity of any triangle is at the intersection of the lines
drawn from any two angles to the middle points of the opposite sides respectively.

Proposition 15.

If AD, BC be the two parallel sides of a trapezium ABCD, AD being the smaller, and if AD, BC be bisected at E, F
respectively, then the centre of gravity of the trapezium is at a point G on EF such that

GE : GF = (2BC + AD) : (2AD + BC).

Produce BA, CD to meet at O. Then FE produced will also pass through O, since AE = ED, and BF = FC.

Now the centre of gravity of the triangle OAD will lie on OE, and that of the triangle OBG will lie on OF. [Prop. 13]

It follows that the centre of gravity of the remainder, the trapezium ABCD, will also lie on OF. [Prop. 8]

Join BD, and divide it at L, M into three equal parts. Through L, M draw PQ, RS parallel to BC meeting BA in P, R, FE in
W, V, and CD in Q, S respectively.

Join DF, BE meeting PQ in H and RS in K respectively.

Now, since

Therefore H is the centre of gravity of the triangle DBG *.

Similarly, since EK = BE, it follows that K is the centre of gravity of the triangle ADB.

Therefore the centre of gravity of the triangles DBC, ADB together, i.e. of the trapezium, lies on the line HK.

But it also lies on OF.

Therefore, if OF, HK meet in G, G is the centre of gravity of the trapezium.

Hence [Props. 6, 7]

But Δ DBC: Δ ABD = BC: AD.

Therefore BC : AD = VG : GW.

It follows that



* This easy deduction from Prop. 14 is assumed by Archimedes without proof.
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Proposition 1.

If P, P′ be two parabolic segments and D, E their centres of gravity respectively, the centre of gravity of the two
segments taken together will be at a point C on DE determined by the relation

P : P′ = CE : CD*
In the same straight line with DE measure EH, EL each equal to DC, and DK equal to DH; whence it follows at once that

DK = CE, and also that KG = CL.

Apply a rectangle MN equal in area to the parabolic segment P to a base equal to KH, and place the rectangle so that KH
bisects it, and is parallel to its base.

Then D is the centre of gravity of MN, since KD = DH.

Produce the sides of the rectangle which are parallel to KH, and complete the rectangle NO whose base is equal to HL.
Then E is the centre of gravity of the rectangle NO.

Now

But (MN) = P.

Therefore (NO) = P′.

Also, since C is the middle point of KL, O is the centre of gravity of the whole parallelogram made up of the two
parallelograms (MN), (NO), which are equal to, and have the same centres of gravity as, P, P′ respectively.

Hence C is the centre of gravity of P, P′ taken together.

 

Definition and lemmas preliminary to Proposition 2.

“If in a segment bounded by a straight line and a section of a right-angled cone [a parabola] a triangle be inscribed having
the same base as the segment and equal height, if again triangles be inscribed in the remaining segments having the same bases
as the segments and equal height, and if in the remaining segments triangles be inscribed in the same manner, let the resulting
figure be said to be inscribed in the recognised manner (γνωρíµωs εερáϕεσθαι) in the segment.

And it is plain
(1) that the lines joining the two angles of the figure so inscribed which are nearest to the vertex of the segment, and the



next pairs of angles in order, will be parallel to the base of the segment,
(2) that the said lines will be bisected by the diameter of the segment, and
(3) that they will cut the diameter in the proportions of the successive odd numbers, the number one having reference to
[the length adjacent to] the vertex of the segment.

And these properties will have to be proved in their proper places ( ν τaîς τáξεσιν).”

[The last words indicate an intention to give these propositions in their proper connexion with systematic proofs; but the
intention does not appear to have been carried out, or at least we know of no lost work of Archimedes in which they could
have appeared. The results can however be easily derived from propositions given in the Quadrature of the Parabola as
follows.

(1)  Let BRQPApqrb be a figure inscribed ‘in the recognised manner’ in the parabolic segment BAb of which Bb is the
base, A the vertex and AO the diameter.

Bisect each of the lines BQ, BA, QA, Aq, Ab, qb, and through the middle points draw lines parallel to AO meeting Bb in G,
F, E, e, f, g respectively.

These lines will then pass through the vertices R, Q, P, p, q, r of the respective parabolic segments [Quadrature of the
Parabola, Prop. 18], i.e. through the angular points of the inscribed figure (since the triangles and segments are of equal
height).

Also BG = GF = FE = EO, and Oe = ef = fg = gb. But BO = Ob, and therefore all the parts into which Bb is divided are
equal.

If now AB, RG meet in L, and Ab, rg in l, we have

whence GL = gl.
Again [ibid., Prop. 4]

and, since GL = gl, LR = lr.

Therefore GR, gr are equal as well as parallel.



Hence GRrg is a parallelogram, and Rr is parallel to Bb.

Similarly it may be shown that Pp, Qq are each parallel to Bb.

(2) Since RGgr is a parallelogram, and RG,rg are parallel to AO, while GO =Og, it follows that Rr is bisected by AO.

And similarly for Pp, Qq.

(3) Lastly, if V, W, X be the points of bisection of Pp, Qq, Rr,

whence AV : VW : WX : XO = 1 : 3 : 5 : 7.]

Proposition 2.

If a figure be ‘inscribed in the recognised manner’ in a parabolic segment, the centre of gravity of the figure so
inscribed will lie on the diameter of the segment.

For, in the figure of the foregoing lemmas, the centre of gravity of the trapezium BRrb must lie on XO, that of the trapezium
RQqr on WX, and so on, while the centre of gravity of the triangle PAp lies on AV.

Hence the centre of gravity of the whole figure lies on AO.

Proposition 3.

If BAB′, bab′ be two similar parabolic segments whose diameters are AO, ao respectively, and if a figure be inscribed in
each segment ‘in the recognised manner’, the number of sides in each figure being equal, the centres of gravity of the
inscribed figures will divide AO, ao in the same ratio. [Archimedes enunciates this proposition as true of similar segments,
but it is equally true of segments which are not similar, as the course of the proof will show.]

Suppose BRQPAP′Q′R′B′, brqpap′q′r′b′  to be the two figures inscribed ‘in the recognised manner.’ Join PP′, QQ′ , RR′
meeting AO in L, M, N, and pp′, qq′, rr′ meeting ao in l, m, n.

Then [Lemma (3)]

so that AO, ao are divided in the same proportion.

Also, by reversing the proof of Lemma (3), we see that
PP′ : pp′ = QQ′ : qq′ = RR′ : rr′ = BB′ : bb′.

Since then RR′ : BB′ = rr′: bb′, and these ratios respectively determine the proportion in which NO, no are divided by the
centres of gravity of the trapezia BRR′B′, brr′b′ [I. 15], it follows that the centres of gravity of the trapezia divide NO, no in the
same ratio.



Similarly the centres of gravity of the trapezia RQQ′R′, rqq′r′ divide MN, mn in the same ratio respectively, and so on.

Lastly, the centres of gravity of the triangles PAP′, pap′ divide AL, al respectively in the same ratio.

Moreover the corresponding trapezia and triangles are, each to each, in the same proportion (since their sides and heights
are respectively proportional), while AO, ao are divided in the same proportion.

Therefore the centres of gravity of the complete inscribed figures divide AO, ao in the same proportion.

Proposition 4.

The centre of gravity of any parabolic segment cut off by a straight line lies on the diameter of the segment
Let BAB′ be a parabolic segment, A its vertex and AO its diameter.

Then, if the centre of gravity of the segment does not lie on AO, suppose it to be, if possible, the point F. Draw FE parallel
to AO meeting BB′ in E.

Inscribe in the segment the triangle ABB′ having the same vertex and height as the segment, and take an area S such that
ΔABB′ : S = BE : EO.

We can then inscribe in the segment ‘in the recognised manner’ a figure such that the segments of the parabola left over are
together less than S. [For Prop. 20 of the Quadrature of the Parabola proves that, if in any segment the triangle with the same
base and height be inscribed, the triangle is greater than half the segment; whence it appears that, each time that we increase the
number of the sides of the figure inscribed ‘in the recognised manner,’ we take away more than half of the remaining segments.]

Let the inscribed figure be drawn accordingly; its centre of gravity then lies on AO [Prop. 2]. Let it be the point H.

Join HF and produce it to meet in K the line through B parallel to AO.



Then we have

Suppose L taken on HK produced so that the former ratio is equal to the ratio LF : FH.

Then, since H is the centre of gravity of the inscribed figure, and F that of the segment, L must be the centre of gravity of all
the segments taken together which form the remainder of the original segment. [I. 8]

But this is impossible, since all these segments lie on one side of the line drawn through L parallel to AO [Cf. Post 7].

Hence the centre of gravity of the segment cannot but lie on AO.

Proposition 5.

If in a ‘parabolic segment a figure be inscribed ‘in the recognised manner’ the centre of gravity of the segment is
nearer to the vertex of the segment than the centre of gravity of the inscribed figure is.

Let BAB′ be the given segment, and AO its diameter. First let ABB′ be the trianqle inscribed ‘in the recognised manner’

Divide AO in F so that AF = 2F0; F is then the centre of gravity of the triangle ABB′.

Bisect AB, AB′ in D, D′ respectively, and join DD′ meeting AO in E. Draw DQ, D′Q′ parallel to OA to meet the curve. QD,
Q′D′ will then be the diameters of the segments whose bases are AB, AB′, and the centres of gravity of those segments will lie
respectively on QD, Q′D′ [Prop. 4]. Let them be H, H′, and join HH′ meeting AO in K.

Now QD, Q′D′ are equal *, and therefore the segments of which they are the diameters are equal [On Conoids and
Spheroids, Prop. 3].

Also, since QD, Q′D′ are parallel *, and DE = ED′, K is the middle point of HH′.
Hence the centre of gravity of the equal segments AQB, AQ′B′ taken together is K, where K lies between E and A. And the

centre of gravity of the triangle ABB′ is F.

It follows that the centre of gravity of the whole segment. BAB′ lies between K and F, and is therefore nearer to the vertex A
than F is.

Secondly, take the five-sided figure BQAQ′B′ inscribed ‘in the recognised manner,’ QD, Q′D′ being, as before, the
diameters of the segments AQB, AQ′B′.

Then, by the first part of this proposition, the centre of gravity of the segment AQB (lying of course on QD) is nearer to Q
than the centre of gravity of the triangle AQB is. Let the centre of gravity of the segment be H, and that of the triangle I.

Similarly let H′ be the centre of gravity of the segment AQ′B′, and I′ that of the triangle AQ′B′.
It follows that the centre of gravity of the two segments AQB, AQ′B′ taken together is K, the middle point of HH′, and that of

the two triangles AQB, AQ′B′ is L, the middle point of II′.



If now the centre of gravity of the triangle ABB′ be F, the centre of gravity of the whole segment BAB′ (i.e. that of the
triangle ABB′ and the two segments AQB, AQ′B′ taken together) is a point G on KF determined by the proportion (sum of
segments AQB, AQ′B′) : ΔABB′ = FG : GK. [I. 6, 7]

And the centre of gravity of the inscribed figure BQAQ′B′ is a point F′ on LF determined by the proportion
(ΔAQB + ΔAQ′B′) = FF′ : F′L. [I. 6,7]

[Hence FG : GK > FF′ : F′L,
or GK : FG < F′G < F′L : FF′,
and, componendo, FK : FG < FL : FF′, while FK > FL.]

Therefore FG > FF′ or G lies nearer than F′ to the vertex A.

Using this last result, and proceeding in the same way, we can prove the proposition for any figure inscribed ‘in the
recognised manner’.

Proposition 6.

Given a segment of a parabola cut off by a straight line, it is possible to it inscribe in it ‘in the recognised manner’ a
figure such that the distance between the centres of gravity of the segment and of the inscribed figure is less than any
assigned length.

Let BAB′ be the segment, AO its diameter, G its centre of gravity, and ABB′ the triangle inscribed ‘in the recognised
manner.’

Let D be the assigned length and S an area such that
AG : D = ΔABB′ : S.

In the segment inscribe ‘in the recognised manner’ a figure such that the sum of the segments left over is less than S. Let F
be the centre of gravity of the inscribed figure.

We shall prove that FG < D.

For, if not, FG must be either equal to, or greater than, D.

And clearly

(inscribed fig.):(sum of remaining segments.)

Let the first ratio be equal to the ratio KG : FG (where K lies on GA produced); and it follows that K is the centre of gravity
of the small segments taken together.  [I. 8]



But this is impossible, since the segments are all on the same side of a line drawn through K parallel to BB′.
Hence FG cannot but be less than D.

Proposition 7.

If there be two similar parabolic segments, their centres of gravity divide their diameters in the same ratio.

[This proposition, though enunciated of similar segments only, like Prop. 3 on which it depends, is equally true of any
segments. This fact did not escape Archimedes, who uses the proposition in its more general form for the proof of Prop. 8
immediately following.]

Let BAB′, bob′ be the two similar segments, AO, ao their diameters, and G, g their centres of gravity respectively.

Then, if G, g do not divide AO, ao respectively in the same ratio, suppose H to be such a point on AO that and inscribe in
the segment BAB′ ‘in the recognised manner’ a figure such that, if F be its centre of gravity,

AH : HO = ag : go;

Inscribe in the segment bab′ ‘in the recognised manner’ a similar figure; then, if f be the centre of gravity of this figure,

And, by Prop. 3, af : fo = AF : FO.

But

Therefore af : fo<ag:go; which is impossible.

It follows that G, g cannot but divide A O, ao in the same ratio.



Proposition 8.

If AO be the diameter of a parabolic segment, and G its centre of gravity, then
AG =  GO.

Let the segment be BAB′. Inscribe the triangle ABB′ ‘in the recognised manner,’ and let F be its centre of gravity.

Bisect AB, AB′ in D, D′ and draw DQ, D′Q′ parallel to OA to meet the curve, so that QD, Q′D′ are the diameters of the
segments AQB, AQ′B′ respectively.

Le t H, H′ be the centres of gravity of the segments AQB, AQ′B′ respectively. Join QQ′, HH′ meeting AO in V, K
respectively.

K is then the centre of gravity of the two segments AQB AQ′B′ taken together.

Now

whence AO :OG = QD : HD.
But AO = 4QD [as is easily proved by means of Lemma (3), p. 206].

Therefore OG = 4HD.

and, by subtraction, AG = 4QH.
Also, by Lemma (2), QQ′ is parallel to BB′ and therefore to DD′. It follows from Prop. 7 that HH′ is also parallel to QQ′ or

DD′,
and hence QH = VK.

Therefore AG = 4VK,
and AV + KG = 3VK.

Measuring VL along VK so that VL = AV, we have

Again

whence

Now, by I. 6, 7,

Δ ABB′: (sum of segmts. AQB, AQ′B′) = KG : GF,
and ΔABB′ = 3(sum of segmentsAQB,AQ′B′)

[since the segment ABB′ is equal to  Δ ABB′ (Quadrature of the Parabola, Props. 17, 24)].

Hence KG = 3GF



But KG = 3LK, from (1) above.

Therefore

And, from (2),
LF = (AO−AL−OF)= AO = OF.

Therefore OF = 5GF,
and OG = 6GF.

But AO = 3OF = 15GF.

Therefore, by subtraction,

Proposition 9 (Lemma).

If a, b, c, d be four lines in continued proportion and in descending order of magnitude, and if
d : (a−d) = x : (a −c),

and  (2a + 4b + 6c + 3d) : (5a +10b + 10c + 5d) = y : (a − c), is required to prove that
x+y = a.

[The following is the proof given by Archimedes, with the only difference that it is set out in algebraical instead of
geometrical notation. This is done in the particular iase simply in order to make the proof easier to follow. Archimedes
exhibits his lines in the figure reproduced in the margin, but, now that it is possible to use algebraical notation, there is no
advantage in using the figure and the more cumbrous notation which only obscures the course of the proof. The relation
between Archimedes’ figure and the letters used below is as follows;

AB = a,ΓB = b,ΔB = c, EB = d, ZH = x,HΘ = y,ΔO = z.]

We have

whence

and therefore

Now

And, in like manner,



It follows from the last two relations that

Suppose z to be so taken that

so that z < (c − d).

Therefore

And, by hypothesis,

so that

Again, dividing (3) by (4) crosswise, we obtain

whence

But, by (2),

so that

Combining (6) and (7), we have

whence

And, since [by (1)]

we have

whence

Thus



and therefore, by hypothesis,

But, by (8),

and it follows, ex aequali, that

And, by (5),

Therefore

or x + y= a.

Proposition 10.

If PP′B′B be the portion of a parabola intercepted between two parallel chords PP ′ BB′ bisected respectively in N, O by
the diameter ANO (N being nearer than O to A, the vertex of the segments), and if NO be divided into five equal parts of
which LM is the middle one (L being nearer than M to N), then, if G be a point on LM such that

LG : GM = BO2 . (2PN + BO) : PN2 . (2BO + PN),

G will be the centre of gravity of the area PP′B′B.

Take a line ao equal to AO, and an on it equal to AN. Let p, q be points on the line ao such that

[whence ao : aq = aq : an = an : ap, or ao, aq, an, ap are lines in continued proportion and in descending order of magnitude].

Measure along GA a length GF such that

Then, since PN, BO are ordinate to ANO,

so that

and



Thus (segment BAB′) : (segment PAP′)

whence

Now

and

Hence, ex aequali,
BO2.(2PN + BO) : PN2.(2BO + PN) = (2aq + ao) : (2an + ap),
so that, by hypothesis,

LG : GM = (2aq + ao) : (2an + ap).
Componendo, and multiplying the antecedents by 5,

ON : GM = {5ao + ap) + 10(aq + an)} : (2an + ap).
But  

It follows that
ON : OG = {5(ao + ap) + 10(aq + an} : {2(ao + ap) + 4(aq + an}.
Therefore

And



while ao, aq, an, ap are in continued proportion.

Therefore, by Prop. 9,
GF + OG = OF = ao = OA

Thus F is the centre of gravity of the segment BAB′. [Prop. 8]

Let H be the centre of gravity of the segment PAP′, so that AH = AN.

And, since AF = AO
we have, by subtraction, HF = ON.
But, by (6) above,

Thus, since F, H are the centres of gravity of the segments BAB′, PAP′ respectively, it follows [by I. 6, 7] that G is the centre of
gravity of the area PP′B′B.

* This proposition is really a particular case of Props. 6, 7 of Book I. and is therefore hardly necessary. As, however, Book II. relates exclusively to parabolic
segments, Archimedes’ object was perhaps to emphasize the fact that the magnitudes in I. 6, 7 might be parabolic segments as well as rectilinear figures. His procedure is
to substitute for the segments rectangles of equal area, a substitution which is rendered possible by the results obtained in his separate treatise on the Quadrature of the
Parabola.

* This may either be inferred from Lemma (1) above (since QQ′, DD′ are both parallel to BB′), or from Prop. 19 of the Quadrature of the parabola, which applies
equally to Q or Q′.

* There is clearly some interpolation in the text here, which has the words κaì πεì παραλληλόγρaμμόν στι τò θZHI. It is not yet proved that H′D′DH is a
parallelogram; this can only be inferred from the fact that H, H′ divide QD, Q′D′ respectively in the same ratio. But this latter property does not appear till Prop. 7, and is
then only enunciated of similar segments. The interpolation must have been made before Eutocius’ time, because he has a note on the phrase, and explains it by gravely
assuming that H, H′ divide QD, Q′D′ respectively in the same ratio.



THE SAND-RECKONER.

 

“THERE are some, king Gelon, who think that the number of the sand is infinite in multitude; and I mean by the sand not only
that which exists about Syracuse and the rest of Sicily but also that which is found in every region whether inhabited or
uninhabited. Again there are some who, without regarding it as infinite, yet think that no number has been named which is great
enough to exceed its multitude. And it is clear that they who hold this view, if they imagined a mass made up of sand in other
respects as large as the mass of the earth, including in it all the seas and the hollows of the earth filled up to a height equal to
that of the highest of the mountains, would be many times further still from recognising that any number could be expressed
which exceeded the multitude of the sand so taken. But I will try to show you by means of geometrical proofs, which you will
be able to follow, that, of the numbers named by me and given in the work which I sent to Zeuxippus, some exceed not only the
number of the mass of sand equal in magnitude to the earth filled up in the way described, but also that of a mass equal in
magnitude to the universe. Now you are aware that ‘universe’ is the name given by most astronomers to the sphere whose
centre is the centre of the earth and whose radius is equal to the straight line between the centre of the sun and the centre of the
earth. This is the common account (τá γραφóμ να), as you have heard from astronomers. But Aristarchus of Samos brought out
a book consisting of some hypotheses, in which the premisses lead to the result that the universe is many times greater than that
now so called. His hypotheses are that the fixed stars and the sun remain unmoved, that the earth revolves about the sun in the
circumference of a circle, the sun lying in the middle of the orbit, and that the sphere of the fixed stars, situated about the same
centre as the sun, is so great that the circle in which he supposes the earth to revolve bears such a proportion to the distance of
the fixed stars as the centre of the sphere bears to its surface. Now it is easy to see that this is impossible; for, since the centre
of the sphere has no magnitude, we cannot conceive it to bear any ratio whatever to the surface of the sphere. We must however
take Aristarchus to mean this: since we conceive the earth to be, as it were, the centre of the universe, the ratio which the earth
bears to what we describe as the ‘universe’ is the same as the ratio which the sphere containing the circle in which he
supposes the earth to revolve bears to the sphere of bhe fixed stars. For he adapts the proofs of his results to a hypothesis of
this kind, and in particular he appears to suppose the magnitude of the sphere in which he represents the earth as moving to be
equal to what we call the ‘universe.’

I say then that, even if a sphere were made up of the sand, as great as Aristarchus supposes the sphere of the fixed stars to
be, I shall still prove that, of the numbers named in the Principles*, some exceed in multitude the number of the sand which is
equal in magnitude to the sphere referred to, provided that the following assumptions be made.

1. The perimeter of the earth is about 3,000,000 stadia and not greater.

It is true that some have tried, as you are of course aware, to prove that the said perimeter is about 300,000 stadia. But I go
further and, putting the magnitude of the earth at ten times the size that my predecessors thought it, I suppose its perimeter to be
about 3,000,000 stadia and not greater.

2. The diameter of the earth is greater than the diameter of the moon, and the diameter of the sun is greater than the
diameter of the earth.

In this assumption I follow most of the earlier astronomers.

3. The diameter of the sun is about 30 times the diameter of the moon and not greater,

It is true that, of the earlier astronomers, Eudoxus declared it to be about nine times as great, and Pheidias my father *
twelve times, while Aristarchus tried to prove that the diameter of the sun is greater than 18 times but less than 20 times the
diameter of the moon. But I go even further than Aristarchus, in order that the truth of my proposition may be established
beyond dispute, and I suppose the diameter of the sun to be about 30 times that of the moon and not greater.

4. The diameter of the sun is greater than the side of the ohiliagon inscribed in the greatest circle in the  (sphere of
the) universe.

I make this assumption † because Aristarchus discovered that the sun appeared to be about th part of the circle of the
zodiac, and I myself tried, by a method which I will now describe, to find experimentally (òργανικ s) the angle subtended by
the sun and having its vertex at the eye (τàν γωνίαν, ìς ν ó λιoς ναρµóζει τàν κορυφàν χoνσαν πoτì τ  őΨ ι).”

[Up to this point the treatise has been literally translated because of the historical interest attaching to the ipsissima verba
of Archimedes on such a subject. The rest of the work can now be more freely reproduced, and, before proceeding to the
mathematical contents of it, it is only necessary to remark that Archimedes next describes how he arrived at a higher and a



lower limit for the angle subtended by the sun. This he did by taking a long rod or ruler (κανών), fastening on the end of it a
small cylinder or disc, pointing the rod in the direction of the sun just after its rising (so that it was possible to look directly at
it), then putting the cylinder at such a distance that it just concealed, and just failed to conceal, the sun, and lastly measuring the
angles subtended by the cylinder. He explains also the correction which he thought it necessary to make because “the eye does
not see from one point but from a certain area “ ( π ì αí őΧι ς oύκ áϕ νòs σαμ ίου βλ πoντι, àλλà àπò τινos µ γ θ oς).]

The result of the experiment was to show that the angle subtended by the diameter of the sun was less than th part, and
greater than th part, of a right angle.

To prove that  (on this assumption) the diameter of the sun is greater than the side of a chiliagon, or figure with 1000
equal sides, inscribed in a great circle of the ‘universe.’

Suppose the plane of the paper to be the plane passing through the centre of the sun, the centre of the earth and the eye, at
the time when the sun has just risen above the horizon. Let the plane cut the earth in the circle EHL and the sun in the circle
FKG, the centres of the earth and sun being C, O respectively, and E being the position of the eye.

Further, let the plane cut the sphere of the ‘universe’ (i.e. the sphere whose centre is C and radius CO) in the great circle
AOB.

Draw from E two tangents to the circle FKG touching it at P, Q, and from C draw two other tangents to the same circle
touching it in F, G respectively.

Let CO meet the sections of the earth and sun in H, K respectively; and let CF, CG produced meet the great circle AOB in
A, B.

Join EO, OF, OG, OP, OQ, AB, and let AB meet CO in M.

Now CO > EO, since the sun is just above the horizon.

Therefore ∠PEQ > ∠FCG.

Thus
and the chord AB subtends an arc of the great circle which is less than th of the circumference of that circle, i.e.

AB < (side of 656-sided polygon inscribed in the circle).

Now the perimeter of any polygon inscribed in the great circle is less than  CO. [Cf. Measurement of a circle, Prop. 3.]

Therefore AB : CO<11 : 1148,

and, a fortiori,

Again, since CA = CO, and AM is perpendicular to CO, while OF is perpendicular to CA,



AM = OF.

Therefore  AB = 2AM = (diameter of sun).

Thus  (diameter of sun) < CO, by (α),
and, a fortiori,

(diamteter of earth)< CO. [Assumption 2]

Hence CH + OK < CO
so that HK> CO,
or CO : HK < 100 : 99.
And CO > CF,
while HK < EQ.

Therefore

Now in the right-angled triangles CFO, EQO, of the sides about the right angles,
OF = OQ, but < CF (since EO < CO).

Therefore < OEQ : < OCF > CO : EO,
but < CF : EQ**.
Doubling the angles,

< PEQ : < ACB < CF : EQ
∠ 10 : 99, by (β) above.

But < PEQ> R, by hypothesis.
Therefore

It follows that the arc AB is greater than th of the circumference of the great circle AOB.

Hence, a fortiori,
AB > (side of chiliagon inscribed in great circle),

and AB is equal to the diameter of the sun, as proved above.

 

The following results can now be proved:
(diameter of ‘universe’) < 10,000 (diameter of earth),

and (diameter of ‘universe’) < 10,000,000,000 stadia.

(1) Suppose, for brevity, that du represents the diameter of the ‘universe,’ d8 that of the sun, de that of the earth, and dm that
of the moon.

Now, by the last proposition,
d8 > (side of chiliagon inscribed in great circle),

so that

But the perimeter of any regular polygon with more sides than 6 inscribed in a circle is greater than that of the inscribed
regular hexagon, and therefore greater than three times the diameter. Hence

(perimeter of chiliagon) > 3du.



It follows that du < 10,000de.

(2) (Perimeter of earth)  3,000,000 stadia.
[Assumption 1]

and (perimeter of earth) > 3de.
Therefore de < 1,000,000 stadia,

whence du< 10,000,000,000 stadia.

 

Assumption 5.

Suppose a quantity of sand taken not greater than a poppyseed, and suppose that it contains not more than 10,000 grains.

Next suppose the diameter of the poppy-seed to be not less than  of a finger-breadth.

Orders and periods of numbers.
I. We have traditional names for numbers up to a myriad (10,000); we can therefore express numbers up to a myriad

myriads (100,000,000). Let these numbers be called numbers of the first order.

Suppose the 100,000,000 to be the unit of the second order, and let the second order consist of the numbers from that unit
up to (100,000,000)2.

Let this again be the unit of the third order  of numbers ending with (100,000,000)3; and so on, until we reach the
100,000,000th order of numbers ending with (100,00,00)100,000,000, which we will call P.

II. Suppose the numbers from 1 to P just described to rom the first period.

Let P be the unit of the first order of the second period, and let this consist of the numbers from P up to 100,000,000P.

Let the last number be the unit of the second order of the second period, and let this end with (100,000,000)2 P.

We can go on in this way till we reach the 100,000,000 th order of the second period ending with (l00,000,000)100,000,000

P, or P2.

III. Taking P2 as the unit of the first order of the third period, we proceed in the same way till we reach the 100,000,000th
order of the third period ending with P3.

IV. Taking P3 as the unit of the first order of the fourth period, we continue the same process until we arrive at the
100,000,000th order of the 100,000,000th period ending with P100,000,000. This last number is expressed by Archimedes as “a
myriad-myriad units of the myriad-myriad-th order of the myriad-myriad-th period (αί; μνριακισμνριoστâs π ριóδου
μνριακισμνoρτ ν άρνθμ ν μυρίαι μνρίâδ ς),” which is easily seen to be 100,000,000 times the product of
(100,000,000)99,999,999 and P 99,999,999, i.e. P100,000,000

[The scheme of numbers thus described can be exhibited more clearly by means of indices as follows.

FIRST PERIOD.

SECOND PERIOD



The prodigious extent of this scheme will be appreciated when it is considered that the last number in the first period
would be represented now by 1 followed by 800,000,000 ciphers, while the last number of the (108)th period would require
100,000,000 times as many ciphers, i.e. 80,000 million millions of ciphers.]

Octads.

Consider the series of terms in continued proportion of which the first is 1 and the second 10 [i.e. the geometrical
progression 1, 101, 102, 103, …]. The first octad of these terms [i.e. 1, 101, 102, …107] fall accordingly under the first order
of the first period above described, the second octad [i.e. 108, 109,… 1015] under the second order of the first period, the
first term of the octad being the unit of the corresponding order in each case. Similarly for the third octad, and so on. We can,
in the same way, place any number of octads.

Theorem.

If there be any number of terms of a series in continued proportion, say A1 A2 A3, … Am,… An… Am + n − 1 …of which A1

= 1, A2 = 10 [so that the series forms the geometrical progression 1, 101, 101, …102, …10m − 1, …10m + n − 2,…], and if any
two terms as Am, An be taken and multiplied, the product Am · An will be a term in the same series and will be as many terms
distant from A1 as Am is distant from A1; also it will be distant from A1 by a number of terms less by one than the sum of the
numbers of terms by which Am and An respectively are distant from A1.

Take the term which is distant from An by the same number of terms as Am is distant from A1. This number of terms is m (the
first and last being both counted). Thus the term to be taken is m terms distant from An, and is therefore the term Am + n − 1.

We have therefore to prove that
Am·An = Am+n-1·

Now terms equally distant from other terms in the continued proportion are proportional.

Thus

But Am = Am · A1, since Al = l

Therefore

The second result is now obvious, since Am is m terms distant from A1, An is n terms distant from A1 and Am + n − 1 is (m + n
− 1) terms distant from A1.

Application to the number of the sand.
By Assumption 5 [p. 227],

(dian. of poppy – seed)   (finger-breadth);

and, since spheres are to one another in the triplicate ratio of their diameters, it follows that



We now gradually increase the diameter of the supposed sphere, multiplying it by 100 each time. Thus, remembering that
the sphere is thereby multiplied by 1003 or 1,000,000, the number of grains of sand which would be contained in a sphere with
each successive diameter may be arrived at as follows.

But, by the proposition above [p. 227],
(diameter of ‘universe’) < 10.000,000,000 stadia.

Hence the number of grains of sand which could be contained in a sphere of the size of our ‘universe’ is less than 1,000
units of the seventh order of numbers [or 1051].

From this we can prove further that a sphere of the size attributed by Aristarchus to the sphere of the fixed stars would
contain a number of grains of sand less than 10,000,000 units of the eight order of numbers [or 1056 + 7 = 1063].

For, by hypothesis,

(earth) : (‘universe’) = (‘universe’) : (sphere of fixed stars). And [P. 227]
(diameter of ‘universe’) ≤ 10,000 (diam. of earth);



whence

(diam. of sphere of fixed stars) ≤ 10,000 (diam. of ‘universe’).

Therefore
(sphere of fixed stars) ≤ (10,000)3. (‘universe’).

It follows that the number of grains of sand which would be contained in a sphere equal to the sphere of the fixed stars

∠(10,000)s × 1,000 units of seventh order

∠(13th term o seiries) × (52nd term of series)

∠64th term of series

∠[107 or] 10,000,000 units of eighth order of numbers.

Conclusion
“I conceive that these things, king Gelon, will appear incredible to the great majority of people who have not studied

mathematics, but that to those who are conversant therewith and have given thought to the question of the distances and sizes of
the earth the sun and moon and the whole universe the proof will carry conviction. And it was for this reason that I thought the
subject would be not inappropriate for your consideration.”

* Aρχαί was apparently the title of the work sent to Zeuxippus. Cf. the note attached to the enumeration of lost works of Archimedes in the Introduction, Chapter II.,
ad fin.

* τo àµ  πατρòς is the correction of Blass for τo  Aκούπατρος (Jahrb. f. Philol. cxxvii. 1883).
† This is not, strictly speaking, an assumption; it is a proposition proved later (pp. 224-6)by means of the result of an experiment about to be described.
* The proposition here assumed is of course equivalent to the trigonometrical formula which states that, if α, β are the circular measures of two angles, each less than a

right angle, of which a is the greater, then



QUADRATURE OF THE PARABOLA.

 

“ARCHIMEDES to Dositheus greeting.

“When I heard that Conon, who was my friend in his lifetime, was dead, but that you were acquainted with Conon and
withal versed in geometry, while I grieved for the loss not only of a friend but of an admirable mathematician, I set myself the
task of communicating to you, as I had intended to send to Conon, a certain geometrical theorem which had not been
investigated before but has now been investigated by me, and which I first discovered by means of mechanics and then
exhibited by means of geometry. Now some of the earlier geometers tried to prove it possible to find a rectilineal area equal to
a given circle and a given segment of a circle; and after that they endeavoured to square the area bounded by the section of the
whole cone* and a straight line, assuming lemmas not easily conceded, so that it was recognised by most people that the
problem was not solved. But I am not aware that any one of my predecessors has attempted to square the segment bounded by a
straight line and a section of a rightangled cone [a parabola], of which problem I have now discovered the solution. For it is
here shown that every segment bounded by a straight line and a section of a right-angled cone [a parabola] is four-thirds of the
triangle which has the same base and equal height with the segment, and for the demonstration of this property the following
lemma is assumed: that the excess by which the greater of (two) unequal areas exceeds the less can, by being added to itself, be
made to exceed any given finite area. The earlier geometers have also used this lemma; for it is by the use of this same lemma
that they have shown that circles are to one another in the duplicate ratio of their diameters, and that spheres are to one another
in the triplicate ratio of their diameters, and further that every pyramid is one third part of the prism which has the same base
with the pyramid and equal height; also, that every cone is one third part of the cylinder having the same base as the cone and
equal height they proved by assuming a certain lemma similar to that aforesaid. And, in the result, each of the aforesaid
theorems has been accepted* no less than those proved without the lemma. As therefore my work now published has satisfied
the same test as the propositions referred to, I have written out the proof and send it to you, first as investigated by means of
mechanics, and afterwards too as demonstrated by geometry. Prefixed are, also, the elementary propositions in conics which
are of service in the proof (στοιχ α κωνiκά χρ αν χοντα ς τάν άπóδ ιξιν). Farewell.”

Proposition 1.

If from a point on a parabola a straight line be drawn which is either itself the axis or parallel to the axis, as PV, and if
QQ′ be a chord parallel to the tangent to the parabola at P and meeting PV in V, then

QV = VQ’.

Conversely, if QV = VQ=, the chord QQ= will be parallel to the tangent at P.

Proposition 2.

If in a parabola QQ= be a chord parallel to the tangent at P, and if a straight line be drawn through P which is either
itself the aids or parallel to the axis, and which meets QQ= in V and the tangent at Q to the parabola in T, then

PV + PT



Proposition 3.

If from a point on a parabola a straight line be drawn which is either itself the axis or parallel to the axis, as PV, and if
from two other points Q, Q= on the parabola straight lines be drawn parallel to the tangent at P and meeting PV in V,V=
respectively, then

PV : PV′ = QV2 : Q′V′2.
“And these propositions are proved in the elements of conics.*”

Proposition 4.

If Qq be the base of any segment of a parabola, and P the vertex of the segment, and if the diameter through any other
point R meet Qq in O and QP (produced if necessary) in F, then

QV : VO = OF : FR
Draw the ordinate RW to PV, meeting QP in K.

Then PV : PW = QV2 : PF2

whence, by parallels,
PQ : PK = PQ2 : PF2.

In other words, PQ, PF, PK are in continued proportion; therefore

Hence, by parallels,
QV : VO = OF : FR.

[It is easily seen that this equation is equivalent to a change of axes of coordinates from the tangent and diameter to new axes
consisting of the chord Qq (as axis of x, say) and the diameter through Q (as axis of y).



For, if QV = a, , where p is the parameter of the ordinates to PV.

Thus, if QO − x, and RO = y, the above result gives

whence

or py = x(2a − x)·]

Proposition 5.

If Qq be the base of any segment of a parabola, P the vertex of the segment, and PV its diameter, and if the diameter of
the parabola through any other point R meet Qq in O and the tangent at Q in E, then

QO : Oq = ER :RO.
Let the diameter through R meet QP in F.

Then, by Prop. 4,
QV : VO = OF : FR.

Since QV = Vq, it follows that

Also, if VP meet the tangent in T,
PT = PV, and therefore EF = OF.

Accordingly, doubling the antecedents in (1), we have
Qq : QO = OE : OR,

whence QO : Oq = ER : RO;

Proposition 6, 7*.

Suppose a lever AOB placed horizontally and supported at its middle point O. Let a triangle BCD in which the angle G
is right or obtuse be suspended from B and O, so that G is attached to O and CD is in the same vertical line with O. Then, if
P be such an area as, when suspended from A, will keep the system in equilibrium,

p =  Δ BCD.
Take a point E on OB such that BE = 20E, and draw EFH parallel to OCD meeting BC, BD in F, H respectively. Let G be

the middle point of FH.



Then G is the centre of gravity of the triangle BCD.

Hence, if the angular points B, C be set free and the triangle be suspended by attaching F to E, the triangle will hang in the
same position as before, because EFG is a vertical straight line. “For this is proved †.”

Therefore, as before, there will be equilibrium.

Thus

or P = ΔBCD.

Proposition 8, 9.

Suppose a lever AOB placed horizontally and supported at its middle point O. Let a triangle BCD, right-angled or
obtuseangled at C, be suspended from the points B, E on OB, the angular point O being so attached to E that the side CD is
in the same vertical line with E. Let Q be an area such that

SO : OE = ΔBCD : Q.
Then, if ctu area P suspended from A keep the system in equilibrium,

P < Δ BCD but > Q.
Take G the centre of gravity of the triangle BCD, and draw GH parallel to DC, i.e. vertically, meeting BO in H.

We may now suppose the triangle BCD suspended from H, and, since there is equilibrium,

whence P< Δ BCD.
Also ΔBCD : Q = AO : OE.

Therefore, by (1), ΔBCD : Q > ΔBCD : P,
And P > Q.

Propositions 10, 11.

Suppose a lever AOB placed horizontally and supported at O, its middle point. Let CDEF be a trapezium which can be
so placed that its parallel sides CD, FE are vertical, while C is vertically below O, and the other sides CF, DE meet in B.
Let EF meet BO in H, and let the trapezium be suspended by attaching F to H and C to O. Further, suppose Q to be an area
such that

AO : OH = (trapezium CDEF) : Q.

Then, if p be the area which, when suspended from A, keeps the system in equilibrium,



p < Q.

The same is true in the particular case where the angles at C, F are right, and consequently C, F coincide with O, H
respectively.

Divide OH in K so that
(2CD + FE) : (2FE + CD) = HK : Ko.

Draw KG parallel to OD, and let G be the middle point of the portion of KG intercepted within the trapezium. Then G is the
centre of gravity of the trapezium [On the equilibrium of planes, I. 15].

Thus we may suppose the trapezium suspended from K, and the equilibrium will remain undisturbed.

Therefore
AO : OK = (trapezium ODEF) : P,

and, by hypothesis,
AO : OH = (trapezium GDEF): Q.

Since OK < OH, it follows that
p < Q.

Propositions 12, 13.

If the trapezium GDEF be placed as in the last propositions, except that CD is vertically below a point L on OB instead
of being below O, and the trapezium is suspended from L, H, suppose that Q, R are areas such that

AO : OH = (trapezium CDEF) : Q,

And AO : OL = (itrapezium CDEF) : R.
If then an area P suspended from A keep the system in equilibrium,

P > R but < Q.
Take the centre of gravity G of the trapezium, as in the last propositions, and let the line through G parallel to DC meet OB

in K.

Then we may suppose the trapezium suspended from K, and there will still be equilibrium.

Therefore (trapezium CDEF) : P = AO : OK.
Hence

(trapezium CDEF) : P > (trapezium CDEF) : Q,

but < (trapezium CDEF) : R.
It follows that P < Q but > R.



Propositions 14, 15.

Let Qq be the base of any segment of a parabola. Then, it two lines be drawn from Q, q, each parallel to the axis of the
parabola and on the same side of Qq as the segment is, either (1) the angles so formed at Q, q are both right angles, or (2) one
is acute and the other obtuse. In the latter case let the angle at q be the obtuse angle.

Divide Qq into any number of equal parts at the points O1, O2, … On. Draw through q, O1, O2,…On diameters of the
parabola meeting the tangent at Q in E, E1, E2… En and the parabola itself in q, R1, R2, … Rn. Join QR1, QR2, … QRn meeting
qE, O1E1, O2, E2, … On−2En−1 in F, F1, F2, … Fn−1.

Let the diameters Eq, E1O1,… EnOn meet a straight line QOA drawn through Q perpendicular to the diameters in the points
O, H1, H2, … Hn respectively. (In the particular case where Qq is itself perpendicular to the diameters q will coincide with O,
O1 with H1 and so on.)

It is required to prove that
(1) ΔEqQ<3(sum of trapezia FO1, F1O2,… Fn−1On and ΔEnOnQ),
(2) ΔEqQ > 3(sum of trapezia R1O2, R2O3,… Rn−1On and Δ RnOnQ).

Suppose AO made equal to OQ, and conceive QOA as a lever placed horizontally and supported at O. Suppose the triangle
EqQ suspended from OQ in the position drawn, and suppose that the trapezium EO1 in the position drawn is balanced by an
area P1 suspended from A, the trapezium E1O2 in the position drawn is balanced by the area P2 suspended from A, and so on,
the triangle EnOnQ being in like manner balanced by Pn+1.

Then P2 + P2 + … + Pn+1 will balance the whole triangle EqQ as drawn, and therefore

P1 + P2 + … + pn+1 =  Δ EqQ. [props. 6,7]

Again



whence [Props. 10, 11]
(FO1 > P1.

Next

while

and, since (α) and (β) are simultaneously true, we have, by Props. 12, 13,
(F1O2) > P2 > (R1O2).

Similarly it may be proved that
(F1O2) > (R1O2).

and so on.
Lastly [Props. 8, 9]

ΔEn OnQ > Pn+1> ΔRnOnQ.

By addition, we obtain
(1) 

or ΔEqQ < 3 (FO1 + F1O2 + … + Fn−1On + Δ EnOnQ).

(2) 

or ΔEqQ> (R1O2 + R2Os + … Rn−1 On + Δ RnOnQ).

Proposition 16.

Suppose Qq to be the base of a parabolic segment, q being not more distant than Q from the vertex of the parabola.
Draw through q the straight line qE parallel to the axis of the parabola to meet the tangent at Q in E. It is required to
prove that

(area of segment) =  ΔEqQ.
For, if not, the area of the segment must be either greater or less than  ΔEqQ.

I. Suppose the area of the segment greater than  ΔEqQ. ΔEqQ. Then the excess can, if continually added to itself, be made
to exceed ΔEqQ. And it is possible to find a submultiple of the triangle EqQ less than the said excess of the segment over 
ΔEqQ..



Let the triangle FqQ be such a submultiple of the triangle EqQ. Divide Eq into equal parts each equal to qF, and let all the
points of division including F be joined to Q meeting the parabola in R1, R2, …Rn respectively. Through R1, R2, … Rn draw
diameters of the parabola meeting qQ in O1, O2, … On respectively.

Let O1R1 meet QR2 in F1.

Let O1R2 meet QR1 in D1 and QR3 in F2.

Let O3R3 meet QR2 in D2 and QR4 in F3 and so on.

We have, by hypothesis,
ΔFqQ < (area of segment) − 

or

Now, since all the parts of qE, as qF and the rest, are equal, O1 R2 = R1F1, O2D1 = D1R2 = R2F2, and so on; therefore

But

(area of segment) <(FO1 + F1O2 + … + Fn−1On + Δ EnOnQ).

Subtracting, we have

whence, a fortiori, by (α),
 Δ EqQ < (R1O2 + R2O3 + … + Rn−1On + Δ RnOnQ).

But this is impossible, since [Props. 14, 15]
 Δ EqQ < (R1O2 + R2O3 + … + Rn−1On + Δ RnOnQ).

Therefore
(area of segment)   ΔEqQ.

II. If possible, suppose the area of the segment less than  ΔEqQ.

Take a submultiple of the triangle EqQ, as the triangle FqQ, less than the excess of  ΔEqQ. over the area of the segment,
and make the same construction as before.



Since ΔFqQ <  Δ EqQ − (area of segment),

it follows that

Subtracting from each side the area of the segment, we have

which is impossible, because, by (β) above,
ΔFqQ = FO1 + F1D1 + … + Fn-1Dn-1 + ΔEnRnQ.

Hence (area of segment)   ΔEqQ.

Since then the area of the segment is neither less nor greater than  ΔEqQ, it is equal to it.

Proposition 17.

It is now manifest that the area of any segment of a parabola is four-thirds of the triangle which has the same base as
the segment and equal height.

Let Qq be the base of the segment, P its vertex. Then PQq is the inscribed triangle with the same base as the segment and
equal height.

Since P is the vertex * of the segment, the diameter through P bisects Qq. Let V be the point of bisection.

Let VP, and qE drawn parallel to it, meet the tangent at Q in T, E respectively.

Then, by parallels,
qE = 2VT,

and PV = PT, [prop.2]
so that VT = 2PV.

Hence ΔEqQ = 4ΔPQq.
But, by Prop. 16, the area of the segment is equal to  Δ EqQ.

Therefore (area of segment) = Δ PQq.



 

DEF. “In segments bounded by a straight line and any curve I call the straight line the base, and the height the greatest
perpendicular drawn from the curve to the base of the segment, and the vertex the point from which the greatest perpendicular
is drawn.”

Proposition 18.

If Qq be the base of a segment of a parabola, and V the middle point of Qq, and if the diameter through V meet the
curve in P, then P is the vertex of the segment.

For Qq is parallel to the tangent at P [Prop. 1]. Therefore, of all the perpendiculars which can be drawn from points on the
segment to the base Qq, that from P is the greatest. Hence, by the definition, P is the vertex of the segment.

Proposition 19.

If Qq be a chord of a parabola bisected in V by the diameter PV, and if RM be a diameter bisecting QV in M, and RW
be the ordinate from R to PV, then

PV =  RM.

For, by the property of the parabola,

Proposition 20.

If Qq be the base, and P the vertex, of a parabolic segment, then the triangle PQq is greater than half the segment PQq.

For the chord Qq is parallel to the tangent at P, and the triangle PQq is half the parallelogram formed by Qq, the tangent at
P, and the diameters through Q, q.



Therefore the triangle PQq is greater than half the segment.

COR. It follows that it is possible to inscribe in the segment a polygon such that the segments left over are together less
than any assigned area.

Proposition 21.

If Qq be the base, and P the vertex, of any parabolic segment, and if R be the vertex of the segment cut off by PQ, then
ΔPQq = 8 Δ PRQ.

The diameter through R will bisect the chord PQ, and therefore also QV, where PV is the diameter bisecting Qq. Let the
diameter through R bisect PQ in Y and QV in M. Join PM.

By Prop. 19,
PV = RM.

Also PV = 2 YM.
Therefore YM = 2RY,
And ΔPQM = 2ΔPRQ.
Hence ΔPQV = 4ΔPRQ,
And ΔPQq = 8 ΔPRQ

Also, if RW, the ordinate from R to PV, be produced to meet the curve again in r,
RW = rW,

and the same proof shows that
ΔPQq = 8 ΔPrq.

Proposition 22.

If there be a series of areas A, B, C, D, … each of which is four times the next in order, and if the largest, A, be equal to
the triangle PQq inscribed in a parabolic segment PQq and having the same base with it and equal height, then

(A + B + C + D + ̴) < (area of segment PQq.)



For, since ΔPQq = 8ΔPRQ = 8 Δ Pqr, where R, r are the vertices of the segments cut off by PQ, Pq, as in the last
proposition,

ΔPQq = 4(ΔPQR + Δ Pqr).

Therefore, since ΔPQq = A,
ΔPQR + ΔPqr = B.

In like manner we prove that the triangles similarly inscribed in the remaining segments are together equal to the area C,
and so on.

Therefore A + B + C + D +… is equal to the area of a certain inscribed polygon, and is therefore less than the area of the
segment.

Proposition 23.

Given a series of areas A, B, C, D, … Z, of which A is the greatest, and each is equal to four times the next in order,
then

A + B + C + … + Z + Z = A.

Take areas b, c, d, … such that

Then, since b =  B,
and 

Similarly C + c = B.
………………

Therefore
B + C + D + … + Z + b + c + d + … + z =  (A + B + C + … + Y).

But b + c + d + … y =  (B + C + D + … Y).



Therefore, by subtraction,
B + C + D + … + Z + z =  A

or A + B + C + … + Z + Z = A.

Proposition 24.

Every segment bounded by a parabola and a chord Qq is equal to four-thirds of the triangle which has the same base as
the segment and equal height

Suppose k =  ΔPQq,
where P is the vertex of the segment; and we have then to prove that the area of the segment is equal to K.

For, if the segment be not equal to K, it must either be greater or less.

I. Suppose the area of the segment greater than K.

If then we inscribe in the segments cut off by PQ, Pq triangles which have the same base and equal height, i.e. triangles
with the same vertices R, r as those of the segments, and if in the remaining segments we inscribe triangles in the same manner,
and so on, we shall finally have segments remaining whose sum is less than the area by which the segment PQq exceeds K.

Therefore the polygon so formed must be greater than the area K; which is impossible, since [Prop. 23]



A + B + C + … +Z < A
where A = Δ PQq.

Thus the area of the segment cannot be greater than K.

II. Suppose, if possible, that the area of the segment is less than K.

If then ΔPQq = A, B = A, C B, and so on, until we arrive at an area X such that X is less than the difference between K
and the segment, we have

Now, since K exceeds A + B + C + … + X by an area less than X, and the area of the segment by an area greater than X, it
follows that

A + B + C + … X > (the segment);

which is impossible, by Prop. 22 above.

Hence the segment is not less than K.

Thus, since the segment is neither greater nor less than K,
(area of segment PQq) = K =  ΔPQq.

* There appears to be some corruption here: the expression in the text is τâς őλον τo κώνou τομâς, , and it is not easy to give a natural and intelligible meaning to it.
The section of ‘the whole cone’ might perhaps mean a section cutting right through it, i.e. an ellipse, and the ‘straight line’ might be an axis or a diameter. But Heiberg
objects to the suggestion to read τâς òξvγωνίον κώνον τομâς, in view of the addition of καί ύθ ί͍ς, on the ground that the former expression always signifies the whole of
an ellipse, never a segment of it (Quaestiones Archimedeae, p. 149).

* The Greek of this passage is: συμβαίν ι δ  τ ν προ ιρημένων θ ωρημάτων καστον μηδέν σσον τ ν ν ν τούτου το λήμματος άποδ δ ιγμ νιν π πιστ νκ
ναι. Here it would seem that π πιστ υκέναι must be wrong and that the passive should have been used.

* i.e. in the treatises on conics by Euclid and Aristaeus.
* In Prop. 6 Archimedes takes the separate case in which the angle BCD of the triangle is a right angle so that C coincides with O in the figure and F with E. He then

proves, in Prop. 7, the same property for the triangle in which BCD is an obtuse angle, by treating the triangle as the difference between two right-angled triangles BOD,
BOG and using the result of Prop. 6. I have combined the two propositions in one proof, for the sake of brevity. The same remark applies to the propositions following
Props. 6, 7.

† Doubtless in the lost book π ριì ζνγv. Cf. the Introduction, Chapter II., ad Jin.
*It is curious that Archimedes uses the terms base νertex of a segment here, but gives the definition of them later (at the end of the proposition). Moreover he

assumes the converse of the property proved in Prop.18.



ON FLOATING BODIES.

BOOK I.

 

Postulate 1.

“Let it be supposed that a fluid is of such a character that, its parts lying evenly and being continuous, that part which is
thrust the less is driven along by that which is thrust the more; and that each of its parts is thrust by the fluid which is above it in
a perpendicular direction if the fluid be sunk in anything and compressed by anything else.”

Proposition 1.

If a surface be cut by a plane always passing through a certain point, and if the section be always a circumference [of a
circle] whose centre is the aforesaid point, the surface is that of a sphere.

For, if not, there will be some two lines drawn from the point to the surface which are not equal.

Suppose O to be the fixed point, and A, B to be two points on the surface such that OA, OB are unequal. Let the surface be
cut by a plane passing through OA, OB. Then the section is, by hypothesis, a circle whose centre is O.

Thus OA = OB; which is contrary to the assumption. Therefore the surface cannot but be a sphere.

Proposition 2.

The surface of any fluid at rest is the surface of a sphere whose centre is the same as that of the earth.

Suppose the surface of the fluid cut by a plane through O, the centre of the earth, in the curve ABCD.

ABGD shall be the circumference of a circle.

For, if not, some of the lines drawn from O to the curve will be unequal. Take one of them, OB, such that OB is greater than
some of the lines from O to the curve and less than others. Draw a circle with OB as radius. Let it be EBF, which will
therefore fall partly within and partly without, the surface of the fluid.

Draw 00H making with OB an angle equal to the angle BOB, and meeting the surface in H and the circle in 0. Draw also in
the plane an arc of a circle PQR with centre 0 and within the fluid.

Then the parts of the fluid along PQR are uniform and continuous, and the part PQ is compressed by the part between it and
AB, while the part QR is compressed by the part between QR and BH. Therefore the parts along PQ, QR will be unequally
compressed, and the part which is compressed the less will be set in motion by that which is compressed the more.

Therefore there will not be rest; which is contrary to the hypothesis.

Hence the section of the surface will be the circumference of a circle whose centre is O; and so will all other sections by
planes through O.

Therefore the surface is that of a sphere with centre O.

Proposition 3.

Of solids those which, size for size, are of equal weight with a fluid will, if let down into the fluid, be immersed so that



they do not project above the surface but do not sink lower.

If possible, let a certain solid EFHG of equal weight, volume for volume, with the fluid remain immersed in it so that part
of it, EBGF, projects above the surface.

Draw through O, the centre of the earth, and through the solid a plane cutting the surface of the fluid in the circle ABCD.

Conceive a pyramid with vertex O and base a parallelogram at the surface of the fluid, such that it includes the immersed
portion of the solid. Let this pyramid be cut by the plane of ABCD in OL, OM. Also let a sphere within the fluid and below GH
be described with centre O, and let the plane of ABCD cut this sphere in PQR.

Conceive also another pyramid in the fluid with vertex O, continuous with the former pyramid and equal and similar to it.
Let the pyramid so described be cut in OM, ON by the plane of ABCD.

Lastly, let STUV be a part of the fluid within the second pyramid equal and similar to the part BGHG of the solid, and let
SV be at the surface of the fluid.

Then the pressures on PQ, QR are unequal, that on PQ being the greater. Hence the part at QR will be set in motion by that
at PQ, and the fluid will not be at rest; which is contrary to the hypothesis.

Therefore the solid will not stand out above the surface.

Nor will it sink further, because all the parts of the fluid will be under the same pressure.

Proposition 4.

A solid lighter than a fluid will, if immersed in it, not be completely submerged, but part of it will project above the
surface.

In this case, after the manner of the previous proposition, we assume the solid, if possible, to be completely submerged and
the fluid to be at rest in that position, and we conceive (1) a pyramid with its vertex at O, the centre of the earth, including the
solid, (2) another pyramid continuous with the former and equal and similar to it, with the same vertex O, (3) a portion of the
fluid within this latter pyramid equal to the immersed solid in the other pyramid, (4) a sphere with centre O whose surface is
below the immersed solid and the part of the fluid in the second pyramid corresponding thereto. We suppose a plane to be
drawn through the centre O cutting the surface of the fluid in the circle ABC, the solid in S, the first pyramid in OA, OB, the
second pyramid in OB, OC, the portion of the fluid in the second pyramid in K, and the inner sphere in PQR.

Then the pressures on the parts of the fluid at PQ, QR are unequal, since S is lighter than K. Hence there will not be rest;
which is contrary to the hypothesis.

Therefore the solid S cannot, in a condition of rest, be completely submerged.



Proposition 5.

Any solid lighter than a fluid will, if placed in the fluid, be so far immersed that the weight of the solid will be equal to
the weight of the fluid displaced.

For let the solid be EGHF and let BGHC be the portion of it immersed when the fluid is at rest. As in Prop. 3, conceive a
pyramid with vertex O including the solid, and another pyramid with the same vertex continuous with the former and equal and
similar to it. Suppose a portion of the fluid STUV at the base of the second pyramid to be equal and similar to the immersed
portion of the solid; and let the construction be the same as in Prop. 3.

Then, since the pressure on the parts of the fluid at PQ, QR must be equal in order that the fluid may be at rest, it follows
that the weight of the portion STUV of the fluid must be equal to the weight of the solid EGHF. And the former is equal to the
weight of the fluid displaced by the immersed portion of the solid BGHC.

Proposition 6.

If a solid lighter than a fluid be forcibly immersed in it, the solid will be driven upwards by a force equal to the
difference between its weight and the weight of the fluid displaced.

For let A be completely immersed in the fluid, and let G represent the weight of A, and (G + H) the weight of an equal
volume of the fluid. Take a solid D, whose weight is H and add it to A. Then the weight of (A + D) is less than that of an equal
volume of the fluid; and, if (A + D) is immersed in the fluid, it will project so that its weight will be equal to the weight of the
fluid displaced. But its weight is (G + H).

Therefore the weight of the fluid displaced is (G + H), and hence the volume of the fluid displaced is the volume of the
solid A. There will accordingly be rest with A immersed and D projecting.

Thus the weight of D balances the upward force exerted by the fluid on A, and therefore the latter force is equal to H, which
is the difference between the weight of A and the weight of the fluid which A displaces.

Proposition 7.

A solid heavier than a fluid will, if placed in it, descend to the bottom of the fluid, and the solid will, when weighed in
the fluid, be lighter than its true weight by the weight of the fluid displaced.

(1) The first part of the proposition is obvious, since the part of the fluid under the solid will be under greater pressure, and
therefore the other parts will give way until the solid reaches the bottom.

(2) Let A be a solid heavier than the same volume of the fluid, and let (G + H) represent its weight, while G represents the
weight of the same volume of the fluid.



Take a solid B lighter than the same volume of the fluid, and such that the weight of B is G, while the weight of the same
volume of the fluid is (G + H).

Let A and B be now combined into one solid and immersed. Then, since (A + B) will be of the same weight as the same
volume of fluid, both weights being equal to (G + H)+ G, it follows that (A + B) will remain stationary in the fluid.

Therefore the force which causes A by itself to sink must be equal to the upward force exerted by the fluid on B by itself.
This latter is equal to the difference between (G + H) and G [Prop. 6]. Hence A is depressed, by a force equal to H, i.e. its
weight in the fluid is H, or the difference between (G + H) and G.

 

[This proposition may, I think, safely be regarded as decisive of the question how Archimedes determined the proportions
of gold and silver contained in the famous crown (cf. Introduction, Chapter I.). The proposition suggests in fact the following
method.

Let W represent the weight of the crown, w1 and w2 the weights of the gold and silver in it respectively, so that W = w1 +
w2.

(1) Take a weight W of pure gold and weigh it in a fluid. The apparent loss of weight is then equal to the weight of the fluid
displaced. If F1 denote this weight, F1 is thus known as the result of the operation of weighing.

It follows that the weight of fluid displaced by a weight w1 of gold is .F1.

(2) Take a weight W of pure silver and perform the same operation. If F2 be the loss of weight when the silver is weighed
in the fluid, we find in like manner that the weight of fluid displaced by w2 is . F2

(3) Lastly, weigh the crown itself in the fluid, and let F be the loss of weight. Therefore the weight of fluid displaced by the
crown is F.

It follows that

or w1F1 + w2F2 = (w1 + w2) F,
whence

This procedure corresponds pretty closely to that described in the poem de ponderibus et mensuris (written probably
about 500 A.D.)* purporting to explain Archimedes’ method. According to the author of this poem, we first take two equal
weights of pure gold and pure silver respectively and weigh them against each other when both immersed in water; this gives
the relation between their weights in water and therefore between their loss of weight in water. Next we take the mixture of
gold and silver and an equal weight of pure silver and weigh them against each other in water in the same manner.

The other version of the method used by Archimedes is that given by Vitruvius†, according to which he measured
successively the volumes of fluid displaced by three equal weights, (1) the crown, (2) the same weight of gold, (3) the same
weight of silver, respectively. Thus, if as before the weight of the crown is W, and it contains weights w1 and w2 of gold and
silver respectively,

(1) the crown displaces a certain quantity of fluid, V say.

(2) the weight W of gold displaces a certain volume of fluid, V1 say; therefore a weight W1 of gold displaces a volume 

of fluid.

(3) the weight W of silver displaces a certain volume of fluid, say V2; therefore a weight w2 of silver displaces a volume 



 of fluid.

It follows that

whence, since

and this ratio is obviously equal to that before obtained, viz.

 

Postulate 2.

“Let it be granted that bodies which are forced upwards in a fluid are forced upwards along the perpendicular [to the
surface] which passes through their centre of gravity.”

Proposition 8.

If a solid in the form of a segment of a sphere, and of a substance lighter than a fluid, be immersed in it so that its base
does not touch the surface, the solid will rest in such a position that its aoris is perpendicular to the surface ; and, if the
solid be forced into such a position that its base touches the fluid on one side and be then set free, it will not remain in that
position but will return to the symmetrical position.

[The proof of this proposition is wanting in the Latin version of Tartaglia. Commandinus supplied a proof of his own in his
edition.]

Proposition 9.

If a solid in the form of a segment of a sphere, and of a substance lighter than a fluid, be immersed in it so that its base
is completely below the surface, the solid will rest in such a position that its cuds is perpendicular to the surface.

[The proof of this proposition has only survived in a mutilated form. It deals moreover with only one case out of three
which are distinguished at the beginning, viz. that in which the segment is greater than a hemisphere, while figures only are
given for the cases where the segment is equal to, or less than, a hemisphere.]

Suppose, first, that the segment is greater than a hemisphere. Let it be cut by a plane through its axis and the centre of the
earth; and, if possible, let it be at rest in the position shown in the figure, where AB is the intersection of the plane with the base
of the segment, DE its axis, C the centre of the sphere of which the segment is a part, O the centre of the earth.

The centre of gravity of the portion of the segment outside the fluid, as F, lies on OC produced, its axis passing through C.

Let G be the centre of gravity of the segment. Join FG, and produce it to H so that

FG : GH = (volume if immersed portion) :(rest of solid). Join OH.

Then the weight of the portion of the solid outside the fluid acts along FO, and the pressure of the fluid on the immersed
portion along OH, while the weight of the immersed portion acts along HO and is by hypothesis less than the pressure of the



fluid acting along OH.

Hence there will not be equilibrium, but the part of the segment towards A will ascend and the part towards B descend,
until DE assumes a position perpendicular to the surface of the fluid.

*Torelli’s Archimedes, p. 364; Hultsch, Metrol. Script, II. 95 sq., and Prolegomena § 118.
† De architect. IX. 3.



ON FLOATING BODIES.

BOOK II.

 

Proposition 1.

If a solid lighter than a fluid be at rest in it, the weight of the solid will be to that of the same volume of the fluid as the
immersed portion of the solid is to the whole.

Let (A + B) be the solid, B the portion immersed in the fluid.

Let (C + D) be an equal volume of the fluid, C being equal in volume to A and B to D.

Further suppose the line E to represent the weight of the solid (A + B), (F + G) to represent the weight of (G + D), and G
that of D.

Then

weight of (A + B) : weight of (A + B) : weight of (C : D) = E (F + G) … (1)
And the weight of (A + B) is equal to the weight of a volume B of the fluid [I. 5], i.e. to the weight of D.

That is to say, E = G.

Hence, by (1),

Proposition 2.

If a right segment of a paraboloid of revolution ivhose axis is not greater than  p (where p is the principal parameter
of the generating parabola) , and whose specific gravity is less than that of a fluid, be placed in the fluid with its axis
inclined to the vertical at any angle, but so that the base of the segment does not touch the surface of the fluid, the segment
of the paraboloid will not remain in that position but will return to the position in which its axis is vertical.

Let the axis of the segment of the paraboloid be AN, and through AN draw a plane perpendicular to the surface of the fluid.
Let the plane intersect the paraboloid in the parabola BAB′, the base of the segment of the paraboloid in BB′, and the plane of
the surface of the fluid in the chord QQ′ of the parabola.

Then, since the axis AN is placed in a position not perpendicular to QQ′, BB will not be parallel to QQ′.

Draw the tangent PT to the parabola which is parallel to QQ′, and let P be the point of contact*.

[From P draw PV parallel to AN meeting QQ′ in V. Then PV will be a diameter of the parabola, and also the axis of the



portion of the paraboloid immersed in the fluid.

Let C be the centre of gravity of the paraboloid BAB′, and F that of the portion immersed in the fluid. Join FC and produce
it to H so that H is the centre of gravity of the remaining portion of the paraboloid above the surface.

Then, since AN =  AC*
And AN   p,
it follows that

Therefore, if CP be joined, the angle CPT is acute †. Hence, if CK be drawn perpendicular to PT, K will fall between P
and T. And, if FL, HM be drawn parallel to CK to meet PT, they will each be perpendicular to the surface of the fluid.

Now the force acting on the immersed portion of the segment of the paraboloid will act upwards along LF, while the
weight of the portion outside the fluid will act downwards along HM.

Therefore there will not be equilibrium, but the segment will turn so that B will rise and B′ will fall, until AN takes the
vertical position.]

 

[For purposes of comparison the trigonometrical equivalent of this and other propositions will be appended.

Suppose that the angle NTP, at which in the above figure the axis AN is inclined to the surface of the fluid, is denoted by θ.

Then the coordinates of P referred to AN and the tangent at A as axes are

where p is the principal parameter.

Suppose that AN = h, PV = k.

If now x′; be the distance from T of the orthogonal projection of F on TP, and x the corresponding distance for the point C,
we have

whence

In order that the segment of the paraboloid may turn in the direction of increasing the angle PTN, x′; must be greater than x,
or the expression just found must be positive.

This will always be the case, whatever be the value of θ, if

or



Proposition 3.

If a right segment of a paraboloid of revolution whose axis is not greater than   p (where p is the parameter) , and
whose specific gravity is less than that of a fluid, be placed in the fluid with its axis inclined at any angle to the vertical,
but so that its base is entirely submerged, the solid will not remain in that position but will return to the position in which
the axis is vertical.

Let the axis of the paraboloid be AN, and through AN draw a plane perpendicular to the surface of the fluid intersecting the
paraboloid in the parabola BAB′;, the base of the segment in BNB′;, and the plane of the surface of the fluid in the chord QQ′; of
the parabola.

Then, since AN, as placed, is not perpendicular to the surface of the fluid, QQ′; and BB′; will not be parallel.

Draw PT parallel to QQ′; and touching the parabola at P. Let PT meet NA produced in T. Draw the diameter PV bisecting
QQ′; in V. PV is then the axis of the portion of the paraboloid above the surface of the fluid.

Let C be the centre of gravity of the whole segment of the paraboloid, F that of the portion above the surface. Join FC and
produce it to H so that H is the centre of gravity of the immersed portion.

Then, since AC   the angle CPT is an acute angle, as in the last proposition.

Hence, if CK be drawn perpendicular to PT, K will fall between P and T. Also, if HM, FL be drawn parallel to CK, they
will be perpendicular to the surface of the fluid.

And the force acting on the submerged portion will act upwards along HM, while the weight of the rest will act
downwards along LF produced.

Thus the paraboloid will turn until it takes the position in which AN is vertical.

Proposition 4.

Given a right segment of a paraboloid of revolution whose axis AN is greater than   p (where p is the parameter), and
whose specific gravity is less than that of a fluid but bears to it a ratio not less than (AN −  p)2 : AN2, if the segment of the
paraboloid be placed in the fluid with its axis at any inclination to the vertical, but so that its base does not touch the
surface of the fluid, it will not remain in that position but will return to the position in which its axis is vertical.

Let the axis of the segment of the paraboloid be AN, and let a plane be drawn through AN perpendicular to the surface of the
fluid and intersecting the segment in the parabola BAB′;, the base of the segment in BB′;, and the surface of the fluid in the chord
QQ′; of the parabola.



Then AN, as placed, will not be perpendicular to QQ′;.
Draw PT parallel to QQ′; and touching the parabola at P. Draw the diameter PV bisecting QQ′; in V Thus PV will be the

axis of the submerged portion of the solid.

Let C be the centre of gravity of the whole solid, F that of the immersed portion. Join FC and produce it to H so that H is
the centre of gravity of the remaining portion.

Now, since AN =  AC,

and AN > p,
it follows that

Measure CO along CA equal to  and OR along OC equal to AO.

Then, since AN = AC
And AR =  AC

we have, by subtraction,
NR = OC.

That is,

or AR = (AN − p).
Thus (AN − p)2 : AN2 = AR2 : AN2

and therefore the ratio of the specific gravity of the solid to that of the fluid is, by the enunciation, not less than the ratio AR2

: AN2.

But, by Prop. 1, the former ratio is equal to the ratio of the immersed portion to the whole solid, i.e. to the ratio PV2 : AN2

[On Conoids and Spheroids, Prop. 24].

Hence PV2 : AN2  AR2 : AN2

or PV  AR.

It follows that

If, therefore, OK be drawn from O perpendicular to OA, it will meet PF between P and F.

Also, if CK be joined, the triangle KCO is equal and similar to the triangle formed by the normal, the subnormal and the
ordinate at P (since CO = p or the subnormal, and KO is equal to the ordinate).

Therefore CK is parallel to the normal at P, and therefore perpendicular to the tangent at P and to the surface of the fluid.

Hence, if parallels to CK be drawn through F, H, they will be perpendicular to the surface of the fluid, and the force acting
on the submerged portion of the solid will act upwards along the former, while the weight of the other portion will act



downwards along the latter.

Therefore the solid will not remain in its position but will turn until AN assumes a vertical position.

 

[Using the same notation as before (note following Prop. 2), we have

and the minimum value of the expression within the bracket, for different values of θ, is

corresponding to the position in which AM is vertical, or .

Therefore there will be stable equilibrium in that position only, provided that
k  (h −  p),

or, if s be the ratio of the specific gravity of the solid to that of the fluid (k2/h2 in this case),
k  (h −  p)2/h2

Proposition 5.

Given a right segment of a paraboloid of revolution such that its aocis AN is greater than   (where p is the parameter),
and its specific gravity is less than that of a fluid but in a ratio to it not greater than the ratio {AN2 − (AN − p)2}, if the
segment be placed in the fluid with its axis inclined at any angle to the vertical, but so that its base is completely
submerged, it will not remain in that position but will return to the position in which AN is vertical.

Let a plane be drawn through AN, as placed, perpendicular to the surface of the fluid and cutting the segment of the
paraboloid in the parabola BAB′;, the base of the segment in BB′;, and the plane of the surface of the fluid in the chord QQ′; of
the parabola.

Draw the tangent PT parallel to QQ′;, and the diameter PV, bisecting QQ′;, will accordingly be the axis of the portion of the
paraboloid above the surface of the fluid.

Let F be the centre of gravity of the portion above the surface, C that of the whole solid, and produce FC to H, the centre of
gravity of the immersed portion.

As in the last proposition, AC > , and we measure CO along

CA equal to , and OR along OC equal to AO.

Then AN = AC, and AR = AO;
and we derive, as before,

AR = (An – p).
Now, by hypothesis,

(spec. gravity of solid) : (spec. gravity of fluid)



Therefore
(portion submerged) : (whole solid)

l(AAN2 − AR2) : AN2

and (whole solid) : (portion above surface)
 AN2 : AR2.

Thus AN2 : PV2  AN2 : AR2.
whence PV  AR,
and

Therefore, if a perpendicular to AC be drawn from O, it will meet PF in some point K between P and F.

And, since CO = p, CK will be perpendicular to PT, as in the last proposition.

Now the force acting on the submerged portion of the solid will act upwards through H, and the weight of the other portion
downwards through F, in directions parallel in both cases to CK; whence the proposition follows.

Proposition 6.

If a right segment of a paraboloid lighter than a fluid be such that its aocis AM is greater than , but AM : p < 15: 4,
and if the segment be placed in the fluid with its aocis so inclined to the vertical that its base touches the fluid, it will never
remain in such a position that the base touches the surface in one point only.

Suppose the segment of the paraboloid to be placed in the position described, and let the plane through the axis AM
perpendicular to the surface of the fluid intersect the segment of the paraboloid in the parabolic segment BAB′; and the plane of
the surface of the fluid in BQ.

Take C on AM such that AC = 2CM (or so that C is the centre of gravity of the segment of the paraboloid), and measure CK
along CA such that

AM : CK = 15:4

Thus AM : CK : p, by hypothesis; therefore CK < p.

Measure CO along CA equal to p. Also draw KR perpendicular to AC meeting the parabola in R.



Draw the tangent PT parallel to BQ, and through P draw the diameter PV bisecting BQ in V and meeting KR in I.
Then

“for this is proved”*;

And CK =  AM = AC;
whence AK = AC − CK = AC = AM.

Thus KM =  AM
Therefore KM =  AK.
It follows that

so that

Let F be the centre of gravity of the immersed porti the paraboloid, so that PF = 2FV. Produce FC to H centre of gravity of
the portion above the surface.

Draw OL perpendicular to PV.

Therefore

and accordingly (PV . AK − PI . KM) cannot be negative.

Then, since CO = p, CL must be perpendicular to PT and therefore to the surface of the fluid.

And the forces acting on the immersed portion of the paraboloid and the portion above the surface act respectively upwards
and downwards along lines through F and H parallel to CL.

Hence the paraboloid cannot remain in the position in which B just touches the surface, but must turn in the direction of
increasing the angle PTM.

The proof is the same in the case where the point I is not on VP but on VP produced, as in the second figure*;.

[With the notation used on p. 266, if the base BB′; touch the surface of the fluid at B, we have
BM = BV sin θ + PN,

and, by the property of the parabola,

Therefore



To obtain the result of the proposition, we have to eliminate k between this equation and

We have, from the first equation,

or

Therefore

If then the solid can never rest in the position described, but must turn in the direction of increasing the angle PTM, the
expression within the bracket must be positive whatever be the value of θ.

Therefore

or

Proposition 7.

Given a right segment of a paraboloid of revolution lighter than a fluid and such that its axis AM is greater than  p,
but AM : p < 15:4, if the segment be placed in the fluid so that its base is entirely submerged, it will never rest in such a
position that the base touches the surface of the fluid at one point only.

Suppose the solid so placed that one point of the base only (B) touches the surface of the fluid. Let the plane through B and
the axis AM cut the solid in the parabolic segment BAB′; and the plane of the surface of the fluid in the chord BQ of the
parabola.

Let C be the centre of gravity of the segment, so that AC = 2CM; and measure CK along CA such that
AM : CK = 15:4

It follows that CK <  p
Measure CO along CA equal to p. Draw KR perpendicular to AM meeting the parabola in R.

Let PT, touching at P, be the tangent to the parabola which is parallel to BQ, and PV the diameter bisecting BQ, i.e. the axis
of the portion of the paraboloid above the surface.

Then, as in the last proposition, we prove that



and

Let F be the centre of gravity of the portion of the solid above the surface; join FC and produce it to H, the centre of gravity
of the portion submerged.

Draw OL perpendicular to PV; and, as before, since CO = p, CL is perpendicular to the tangent PT. And the lines through
H, F parallel to CL are perpendicular to the surface of the fluid; thus the proposition is established as before.

The proof is the same if the point I is not on VP but on VP produced.

Proposition 8.

Given a solid in the form of a right segment of a paraboloid of revolution whose axis AM is greater than p, but such
that AM : p < 15:4, and whose specific gravity bears to that of a fluid a ratio less than (AM − p)2, then, if the solid be
placed in the fluid so that its base does not touch the fluid and its axis is inclined at an angle to the vertical, the solid will
not return to the position in which its axis is vertical and will not remain in any position except that in which its axis
makes with the surface of the fluid a certain angle to be described.

Let am be taken equal to the axis AM, and let c be a point on am such that ac = 2cm. Measure co along ca equal to p, and
or along oc equal to ao.

Let X + Y be a straight line such that

Now

Therefore, by hypothesis,
(X + Y)2 : am2 < ar2 : am2

whence (X + Y) < ar, and therefore X < ao.

Measure ob along oa equal to X, and draw bd perpendicular to ab and of such length that

Join ad.

Now let the solid be placed in the fluid with its axis AM inclined at an angle to the vertical. Through AM draw a plane
perpendicular to the surface of the fluid, and let this plane cut the paraboloid in the parabola BAB′; and the plane of the surface
of the fluid in the chord QQ′; of the parabola.

Draw the tangent PT parallel to QQ′;, touching at P, and let PV be the diameter bisecting QQ′; in V (or the axis of the
immersed portion of the solid), and PN the ordinate from P.



Measure AO along AM equal to ao, and OC along OM equal to oc, and draw OL perpendicular to PV.

I. Suppose the angle OTP greater than the angle dab.

Thus PN2 : NT2 > db2 : ba2

But

And db2 : ba2 = co : ah, by (β).

Therefore NT < 2 ab,
or AN < ab,
whence

so that X +Y = PV.
But

or PV <  PV,
and therefore PL > 2LV.

Take a point F on PV so that PF = 2FV, i.e. so that F is the centre of gravity of the immersed portion of the solid.

Also AC = ac =  am =  AM,, and therefore C is the centre of gravity of the whole solid.

Join FC and produce it to H, the centre of gravity of the portion of the solid above the surface.

Now, since CO = p, CL is perpendicular to the surface of the fluid; therefore so are the parallels to CL through F and H.
But the force on the immersed portion acts upwards through F and that on the rest of the solid downwards through H.

Therefore the solid will not rest but turn in the direction of diminishing the angle MTP.

II. Suppose the angle OTP less than the angle dab. In this case, we shall have, instead of the above results, the following,

Also PV > PL,
and therefore PL < 2LV.

Make PF equal to 2FV, so that F is the centre of gravity of the immersed portion.



And, proceeding as before, we prove in this case that the solid will turn in the direction of increasing the angle MTP.

III. When the angle MTP is equal to the angle dab, equalities replace inequalities in the results obtained, and L is itself the
centre of gravity of the immersed portion. Thus all the forces act in one straight line, the perpendicular CL; therefore there is
equilibrium, and the solid will rest in the position described.

[With the notation before used

and a position of equilibrium is obtained by equating to zero the expression within the bracket. We have then

It is easy to verify that the angle θ satisfying this equation is the identical angle determined by Archimedes. For, in the
above proposition,

whence

Also

It follows that

Proposition 9.

Given a solid in the form of a right segment of a paraboloid of revolution whose axis AM is greater than p, but such
that AM ,p< 15:4 and whose specific gravity bears to that of a fluid a ratio greater than {AM2 – (AM –  p)2} : AM2, then,
if the solid be placed in the fluid with its axis inclined at an angle to the vertical but so that its base is entirely below the
surface, the solid will not return to the position in which its axis is vertical and will not remain in any position except that
in which its axis makes with the surface of the fluid an angle equal to that described in the last proposition.

Take am equal to AM, and take c on am such that ac = 2cm. Measure co along ca equal to , and ar along ac such that ar = 
ao.

Let X + Y be such a line that
(spec. gr. of solid) : (spec. gr. of fluid) = {am2 — (X + Y)2} : am2, and suppose X = 2 Y.



Now

Therefore, by hypothesis,
am2 — ar2: am2 < {am2 — (X + Y)2} : am2,

whence X + Y < ar
and therefore X < ao

Make ob (measured along oa) equal to X, and draw bd perpendicular to ba and of such length that
bd2 = co . ab.

Join ad.

Now suppose the solid placed as in the figure with its axis AM inclined to the vertical. Let the plane through AM
perpendicular to the surface of the fluid cut the solid in the parabola BAB′; and the surface of the fluid in QQ′;.

Let PT be the tangent parallel to QQ′;, PV the diameter bisecting QQ′; (or the axis of the portion of the paraboloid above
the surface), PN the ordinate from P.

I. Suppose the angle MTP greater than the angle dab. Let AM be cut as before in C and O so that AC = 2CM, OC = p, and
accordingly AM, am are equally divided. Draw OL perpendicular to PV.

Then, we have, as in the last proposition,
PN2 : NT2 > db2 : ba2,

whence co : NT > co : ab,
and therefore AN < ab.

It follows that

Again, since the specific gravity of the solid is to that of the fluid as the immersed portion of the solid to the whole,
AM2 – (X + Y)2: AM2 = AM2 – PV2: AM2,

or (X + V)2 : AM2 = PV2 : AM2.
That is, X + F = P V.
And

so that PL > 2LV.
Take F on PV so that PF = 2FV. Then F is the centre of gravity of the portion of the solid above the surface.



Also C is the centre of gravity of the whole solid. Join FC and produce it to H, the centre of gravity of the immersed
portion.

Then, since CO = p, CL is perpendicular to PT and to the surface of the fluid; and the force acting on the immersed
portion of the solid acts upwards along the parallel to CL through H, while the weight of the rest of the solid acts downwards
along the parallel to CL through F.

Hence the solid will not rest but turn in the direction of diminishing the angle MTP.

II. Exactly as in the last proposition, we prove that, if the angle MTP be less than the angle dab, the solid will not remain in
its position but will turn in the direction of increasing the angle MTP.

III. If the angle MTP is equal to the angle dab, the solid will rest in that position, because L and F will coincide, and all the
forces will act along the one line CL.

Proposition 10.

Given a solid in the form of a right segment of a paraboloid of revolution in which the axis AM is of a length such that
AM : p > 15:4, and supposing the solid placed in a fluid of greater specific gravity so that its base is entirely above the
surface of the fluid, to investigate the positions of rest.

(Preliminary.)
Suppose the segment of the paraboloid to be cut by a plane through its axis AM in the parabolic segment BAB1 of which BB1

is the base.

Divide AM at C so that AC = 2CM, and measure CK along CA so that

whence, by the hypothesis, CK > p.

Suppose CO measured along CA equal to p, and take a point R on AM such that MR = CO.

Thus

Join BA, draw KA2 perpendicular to AM meeting BA in A2 bisect BA in A3, and draw A2M2, A3M3 parallel to AM meeting
BM in M2, M3 respectively.



On A2M2, A3M3 as axes describe parabolic segments similar to the segment BAB1. (It follows, by similar triangles, that BM
will be the base of the segment whose axis is A3M3 and BB2 the base of that whose axis is A2M2, where BB2 = 2BM2.)

The parabola BA2B2 will then pass through C.

[For

Thus C is seen to be on the parabola BA2B2 by the converse of Prop. 4 of the Quadrature of the Parabola.]

Also, if a perpendicular to AM be drawn from O, it will meet the parabola BA2B2 in two points, as Q2, P2. Let Q1Q2Q3D be
drawn through Q2 parallel to AM meeting the parabolas BAB1, BA3M respectively in Q1, Q3 and BM in D; and let P1P2P3 be the
corresponding parallel to AM through P2. Let the tangents to the outer parabola at P1, Q1 meet MA produced in T1, U
respectively.

Then, since the three parabolic segments are similar and similarly situated, with their bases in the same straight line and
having one common extremity, and since Q1Q2Q3D is a diameter common to all three segments, it follows that

Q1Q2 : Q2Q3 = (B2B1: B1B). (BM : MB2)*
Now

And

It follows that
Q1Q2 : Q2Q3 == 2 : 1,



Also, since

(Enunciation.)
If the segment of the paraboloid be placed in the fluid with its base entirely above the surface, then
(I.) if

the solid will rest in the position in which its axis AM is vertical;
(II.) if

the solid will not rest with its base touching the surface of the fluid in one point only, but in such a position that its base
does not touch the surface at any point and its axis makes with the surface an angle greater than U;

(III. a) if
(spec. gr. of solid) : (spec, gr. of fluid) =  : AM2,

the solid will rest and remain in the position in which the base touches the surface of the fluid at one point only and the
axis makes with the surface an angle equal to U;

(III. b) if
(spec. gr. of solid) : (spec. gr. of fluid) =  : AM2,

the solid will rest with its base touching the surface of the fluid at one point only and with its axis inclined to the surface at
an angle equal to T1;

(IV.) if

the solid will rest and remain in a position with its base more submerged;

(v.) if
(spec. gr. of solid) : (spec. gr. of fluid) <  : AM2,

the solid will rest in a position in which its axis is inclined to the surface of the fluid at an angle less than T1 but so that the
base does not even touch the surface at one point.

(Proof.)

(I.) Since AM > , and
(spec. gr. of solid) : (spec. gr. of fluid)  (AM — p)2 : AM2

it follows, by Prop. 4, that the solid will be in stable equilibrium with its axis vertical.

(II.) In this case



Suppose the ratio of the specific gravities to be equal to
l2 : AM2,

so that l < AR but < Q1Q3.

Place P′V′; between the two parabolas BAB1, BP3Q3M equal

to l and parallel to AM*; and let P′V′; meet the intermediate parabola in F′;.
Then, by the same proof as before, we obtain

P′F′ = 2F′V′·
Let P′T′;, the tangent at P′; to the outer parabola, meet MA in T′;, and let P′N′; be the ordinate at P′.

Join BV′; and produce it to meet the outer parabola in Q′; Let OQ2P2 meet P′F′; in I.

Now, since, in two similar and similarly situated parabolic segments with bases BM, BB1 in the same straight line, BV′;,
BQ′; are drawn making the same angle with the bases,

so that BV′ = V′Q′.
Suppose the segment of the paraboloid placed in the fluid, as described, with its axis inclined at an angle to the vertical,

and with its base touching the surface at one point B only. Let the solid be cut by a plane through the axis and perpendicular to
the surface of the fluid, and let the plane intersect the solid in the parabolic segment BAB′ and the plane of the surface of the
fluid in BQ.



Take the points C, O on AM as before described. Draw the tangent parallel to BQ touching the parabola in P and meeting
AM in T; and let PV be the diameter bisecting BQ (i.e. the axis of the immersed portion of the solid).

Then

whence P′V′ = l = PV.
Thus the segments in the two figures, namely BP′Q′, BPQ, are equal and similar.

Therefore < PTN = < P′T′N′.
Also AT = AT′, AN = AN′, PN = P′N′.
Now, in the first figure, P′I < 2IV′.

Therefore, if OL be perpendicular to PV in the second figure,
PL < 2LV.

Take F on LV so that PF = 2FV, i.e. so that F is the centre of gravity of the immersed portion of the solid. And G is the
centre of gravity of the whole solid. Join FG and produce it to H, the centre of gravity of the portion above the surface.

Now, since CO = p, is perpendicular to the tangent at P and to the surface of the fluid. Thus, as before, we prove that the
solid will not rest with B touching the surface, but will turn in the direction of increasing the angle PTN.

Hence, in the position of rest, the axis AM must make with the surface of the fluid an angle greater than the angle U which
the tangent at makes with AM.

(III. a) In this case
(spec. gr. of solid): (spec. gr. of fluid) =  : AM2.

Let the segment of the paraboloid be placed in the fluid so that its base nowhere touches the surface of the fluid, and its axis
is inclined at an angle to the vertical.

Let the plane through AM perpendicular to the surface of the fluid cut the paraboloid in the parabola BAB’ and the
plane of the surface of the fluid in QQ’. Let PT be the tangent parallel to QQ’, PV the diameter bisecting QQ’, PN the ordinate
at P.



Divide AM as before at C, O.

In the other figure let Q1N’ be the ordinate at Q2. Join BQ3 and produce it to meet the outer parabola in q. Then BQ3 = Q3q
and the tangent Q1U is parallel to Bq. Now

Therefore Q1Q3 = PV; and the segments QPQ’, BQ1q of the paraboloid are equal in volume. And the base of one passes
through B, while the base of the other passes through Q, a point nearer to A than B is.

It follows that the angle between QQ’ and BB’ is less than the angle B1Bq.

Therefore < U < < PTN,
whence AN′ > AN,

and therefore N′O (or Q1 Q2) < PL,

where OL is perpendicular to PV
It follows, since Q1Q2 = 2Q2Q3, that

PL > 2LV.
Therefore F, the centre of gravity of the immersed portion of the solid, is between P and L, while, as before, CL is



perpendicular to the surface of the fluid.

Producing FC to H, the centre of gravity of the portion of the solid above the surface, we see that the solid must turn in the
direction of diminishing the angle PTN until one point B of the base just touches the surface of the fluid.

When this is the case, we shall have a segment BPQ equal and similar to the segment BQ1q, the angle PTN will be equal to
the angle U, and AN will be equal to AN’.

Hence in this case PL = 2LV, and F, L coincide, so that F, C, H are all in one vertical straight line.

Thus the paraboloid will remain in the position in which one point B of the base touches the surface of the fluid, and the
axis makes with the surface an angle equal to U.

(III. b) In the case where
(spec. gr. of solid): (spec. gr. of fluid) =  : AM2,

we can prove in the same way that, if the solid be placed in the fluid so that its axis is inclined to the vertical and its base does
not anywhere touch the surface of the fluid, the solid will take up and rest in the position in which one point only of the base
touches the surface, and the axis is inclined to it at an angle equal to T1 (in the figure on p. 284).

(IV.) In this case

Suppose the ratio to be equal to l2: AM2, so that I is greater than P1P3 but less than Q1Q3.

Place P‘V’ between the parabolas BP1Q1, BP3Q3 so that P‘V’ is equal to I and parallel to AM, and let P‘V’ meet the
intermediate parabola in F’ and OQ2P2 in I.

Join BV′ and produce it to meet the outer parabola in q.

Then, as before, BV’ = V‘q, and accordingly the tangent P‘T at P’ is parallel to Bq. Let P‘N’ be the ordinate of P’.

1. Now let the segment be placed in the fluid, first, with its axis so inclined to the vertical that its base does not anywhere
touch the surface of the fluid.



Let the plane through AM perpendicular to the surface of the fluid cut the paraboloid in the parabola BAB’ and the plane of
the surface of the fluid in QQ’. Let PT be the tangent parallel to QQ’, PV the diameter bisecting QQ’. Divide AM at C, O as
before, and draw OL perpendicular to PV.

Then, as before, we have PV = l = P‘V’.
Thus the segments BP‘q, QPQ’ of the paraboloid are equal in volume; and it follows that the angle between QQ’ and BB’ is
less than the angle B1Bq.

Therefore < P′T′N′ < > PTN,
and Hence AN′ > AN,
so that NO > N′,
i.e.

Thus PL > 2LV, so that F, the centre of gravity of the immersed portion of the solid, is between L and P, while CL is
perpendicular to the surface of the fluid.

If then we produce FG to H, the centre of gravity of the portion of the solid above the surface, we prove that the solid will
not rest but turn in the direction of diminishing the angle PTN.

2.Next let the paraboloid be so placed in the fluid that its base touches the surface of the fluid at one point B only, and let
the construction proceed as before.

Then PV = P‘V’, and the segments BPQ, BP‘q are equal and similar, so that
< PTN = < P′T′N′.

It follows that AN = AN′, NO = N′ O,
and therefore P′I = PL,
whence PL > 2LV.



Thus F again lies between P and L, and, as before, the paraboloid will turn in the direction of diminishing the angle PTN,
i.e. so that the base will be more submerged.

(V.) In this case
(spec. gr. of solid): (spec. gr. of fluid) < : AM2.

If then the ratio is equal to l2: AM2, I < P1P3. Place P‘V’ between the parabolas BP1Q1 and BP3Q3 equal in length to l and
parallel to AM. Let P‘V’ meet the intermediate parabola in F’ and OP2 in I.

Join BV’ and produce it to meet the outer parabola in q. Then, as before, BV’ = V‘q, and the tangent P‘T’ is parallel to Bq.

1. Let the paraboloid be so placed in the fluid that its base touches the surface at one point only.



Let the plane through AM perpendicular to the surface of the fluid cut the paraboloid in the parabolic section BAB’ and the
plane of the surface of the fluid in BQ.

Making the usual construction, we find
PV = l = P′V′,

and the segments BPQ, BP1q are equal and similar.

Therefore < PTN = < P′T′N′,
and AN = AN′, N′O = NO.
Therefore PL = P′I,
whence it follows that PL < 2LV.

Thus F, the centre of gravity of the immersed portion of the solid, lies between L and V, while CL is perpendicular to the
surface of the fluid.

Producing FC to H, the centre of gravity of the portion above the surface, we prove, as usual, that there will not be rest, but
the solid will turn in the direction of increasing the angle PTN, so that the base will not anywhere touch the surface.

2.The solid will however rest in a position where its axis makes with the surface of the fluid an angle less than T1.

For let it be placed so that the angle PTN is not less than T1.

Then, with the same construction as before, PV = I = P‘V’.



And, since

and therefore NO  N1O, where P1N1 is the ordinate of P1.
Hence PL  P1P2.
But P1P2 > P′F′.
Therefore PL > PV
so that F, the centre of gravity of the immersed portion of the solid, lies between P and L.

Thus the solid will turn in the direction of diminishing the angle PTN until that angle becomes less than T1.

 

[As before, if x, x’ be the distances from T of the orthogonal projections of C, F respectively on TP, we have

where h = AM, K = PV.

Also, if the base BB’ touch the surface of the fluid at one point B, we have further, as in the note following Prop. 6,

And

Therefore, to find the relation between h and the angle θ at which the axis of the paraboloid is inclined to the surface of the
fluid in a position of equilibrium with B just touching the surface, we eliminate k and equate the expression in (1) to zero; thus

or

The two values of θ are given by the equations

The lower sign corresponds to the angle U, and the upper sign to the angle T1, in the proposition of Archimedes, as can be
verified thus.

In the first figure of Archimedes (p. 284 above) we have

If P1P2P3 meet BM in D’, it follows that



and

Now, from the property of the parabola,

so that

or

which agrees with the result (5) above.

To find the corresponding ratio of the specific gravities, or k2/h2 we have to use equations (2) and (5) and to express k in
terms of h and p.

Equation (2) gives, on the substitution in it of the value of cot 0 contained in (5),

whence we obtain, by squaring,

The lower sign corresponds to the angle U and the upper to the angle T1 and, in order to verify the results of Archimedes,
we have simply to show that the two values of k are equal to Q1Q3, P1P3 respectively.

Now it is easily seen that

Therefore, using the values of MD, MD’, M3D, M3D’ above found, we have

which are the values of k given in (6) above.]

* The rest of the proof is wanting in the version of Tartaglia, but is given in brakets as supplied by Commanainus.
* As the determination of the centre of gravity of a segment of a paraboloid which is here assumed does not appear in any extant work of Archimedes, or in any

known work by any other Greek mathematician, it appears probable that it was investigated by Archimedes himself in some treatise now lost.
† The truth of this statement is easily proved from the property of the subnormal. For, if the normal at P meet the axis in G, AG is greater than  except in the case

where the normal is the normal at the vertex A itself. But the latter case is excluded here because, by hypothesis, AN is not placed vertically. Hence, P being a different
point from A, AG is always greater than AC; and, since the angle TPG is right, the angle TPC must be acute.

* We have no hint as to the work in which the proof of this proposition contained. The following proof is shorter than Robertson’s (in the Appendix to Torelli’s edition).
Let BQ meet AM in U, and let PN be the ordinate from P to AM.
We have to prove that  or in other words that (PV. AK − PI. KM) is positive or zero.

Now



(since AN = AT).
Now UM : BM = NT : PN .

Therefore UM2 : p . AM = 4AN2 : p . AN,

whence UM2= 4AM . AN,
or

*It is curious that the figures given by Torelli, Nizze and Heiberg are all incorrect, as they all make the point which I have called I lie on BQ instead of VP produced
* This result is assumed without proof, no doubt as being an easy deduction from Prop. 5 of the Quadrature of the Parabola. It may be established as follows.
First, since AA2A3B is a straight line, and AN = AT with the ordinary notation (where PT is the tangent at P and PN the ordinate), it follows, by similar triangles, that the

tangent at B to the outer parabola is a tangent to each of the other two parabolas at the same point B.
Now, by the proposition quoted, if DQ3Q2Q1 produced meet the tangent BT in E,

EQ3 : QSD =BD : DM,

The first two proportions are equivalent to

EQ3 : ED=BD . BB2 : BM. BB2,

and EQ2 : ED = BD . BM : BM . BB2.

By subtraction,

Q2Q3 : ED = BD . MB2 : BM . BB2

Similarly  Q1Q2 : ED=BD . B2B1 : BB2. BB1
It follows that

Q1Q2 : Q2Q3 = (B2B1 : B1B). (BM: MB2).

* Archimedes does not give the solution of this problem, but it can be supplied as follows.
Let BR1Q1, BRQ2 be two similar and similarly situated parabolic segments with their bases in the same straight line, and let BE be the common tangent at B.

Suppose the problem solved, and let ERR1O, parallel to the axes, meet the parabolas in R, R1 and BQ2 in O, making the intercept RR1 equal to l.

Then, we have, as usual,

And

By subtraction,

RR1 : EO = BO . Q1Q2 : BQ1 . BQ2,

or



And the ratio BO : OE is known. Therefore BO2, or OE2, can be found, and therefore O.
* To prove this, suppose that, in the figure on the opposite page, BR1 is produced to meet the outer parabola in R2.
We have, as before,

whence ER1 : ER = BQ2 : BQ1.
And, since R1 is a point within the outer parabola,

ER : ER1 = BR1 : BR2, in like manner.

Hence BQ1 : BQ2 = BR1 : BR2.



BOOK OF LEMMAS.

Proposition 1.

If two circles touch at A, and if BD, EF be parallel diameters in them, ADF is a straight line
[The proof in the text only applies to the particular case where the diameters are perpendicular to the radius to the point of

contact, but it is easily adapted to the more general case by one small change only.]

Let O, C be the centres of the circles, and let OC be joined and produced to A. Draw DH parallel to AO meeting OF in H.

Then, since OH = CD = CA,
and OF = OA,
we have, by subtraction,

HF = CO = DH.
Therefore ∠ HDF = ∠ HFD.
Thus both the triangles GAD, HDF are isosceles, and the third angles AGD, DHF in each are equal. Therefore the equal

angles in each are equal to one another, and
∠ADC = ∠DFH.

Add to each the angle CDF, and it follows that

Hence ADF is a straight line.

The same proof applies if the circles touch externally*

Proposition 2.

Let AB be the diameter of a semicircle, and let the tangents to it at B and at any other point D on it meet in T. If now
DE be drawn perpendicular to AB, and if AT, DE meet in F,

DF = FE.
Produce AD to meet BT produced in H. Then the angle ADB in the semicircle is right; therefore the angle BDH is also right.

And TB, TD are equal.



Therefore T is the centre of the semicircle on BH as diameter, which passes through D.

Hence HT = TB.

And, since DE, HB are parallel, it follows that DF = FE.

Proposition 3.

Let P be any point on a segment of a circle whose base is AB, and let PN be perpendicular to AB. Take D on AB so that
AN = ND. If now PQ be an arc equal to the arc PA, and BQ be joined,

BQ, BD shall be equal*.

Join PA, PQ, PD, DQ.

Then, since the arcs PA, PQ are equal,
PA = PQ.

But, since AN = ND, and the angles at N are right,
PA = PD.

Therefore PQ = PD,

and ∠ PQD = ∠ PDQ.
Now, since A, P, Q, B are concyclic,

∠ PAD) + ∠ PQB = (two right angles),

whence

Therefore ∠ PQB) + ∠ PDB;
and, since the parts, the angles PQD, PDQ, are equal,

∠ BQD = ∠ BDQ,
and BQ = BD.

Proposition 4.

If AB be the diameter of a semicircle and N any point on AB, and if semicircles be described within the first semicircle
and having AN, BN as diameters respectively, the figure included between the circumferences of the three semicircles is
“what Archimedes called an ρβηλος*”; and its area is equal to the circle on PN as diameter, where PN is perpendicular
to A B and meets the original semicircle in P.



For

But circles (or semicircles) are to one another as the squares of their radii (or diameters).
Hence

(semicircle on AB) = (sum of semicircles on AN, NB) + 2 (semicircle on PN).

That is, the circle on PN as diameter is equal to the difference between the semicircle on AB and the sum of the semicircles
on AN, NB, i.e. is equal to the area of the ρβηλος.

Proposition 5.

Let AB be the diameter of a semicircle, G any point on AB, and CD perpendicular to it, and let semicircles be described
within the first semicircle and having AG, GB as diameters. Then, if two circles be drawn touching CD on different sides
and each touching two of the semicircles, the circles so drawn will be equal.

Let one of the circles touch CD at E, the semicircle on AB in F, and the semicircle on AC in G.

Draw the diameter EH of the circle, which will accordingly be perpendicular to CD and therefore parallel to AB.

Join FH, HA, and FE, EB. Then, by Prop. 1, FHA, FEB are both straight lines, since EH, AB are parallel.

For the same reason AGE, GGH are straight lines.

Let AF produced meet GD in D, and let AE produced meet the outer semicircle in I. Join BI, ID.

Then, since the angles AFB, AGD are right, the straight lines AD, AB are such that the perpendiculars on each from the
extremity of the other meet in the point E. Therefore, by the properties of triangles, AE is perpendicular to the line joining B to
D.

But AE is perpendicular to BI.
Therefore BID is a straight line.



Now, since the angles at G, I are right, GH is parallel to BD.

Therefore

so that AC . CB = AB . HE.
In like manner, if d is the diameter of the other circle, we can prove that AC . CB = AB . d.

Therefore d = HE, and the circles are equal*.

[As pointed out by an Arabian Scholiast Alkauhi, this proposition may be stated more generally. If, instead of one point C
on AB, we have two points C, D, and semicircles be described on AC, BB as diameters, and if, instead of the perpendicular to
AB through C, we take the radical axis of the two semicircles, then the circles described on different sides of the radical axis
and each touching it as well as two of the semicircles are equal. The proof is similar and presents no difficulty.]

Proposition 6.

Let AB, the diameter of a semicircle, be divided at G so that AC =  CB [or in any ratio]. Describe semicircles within
the first semicircle and on AC, CB as diameters, and suppose a circle drawn touching all three semicircles. If OH be the
diameter of this circle, to find the relation between OH and AB.

Let GH be that diameter of the circle which is parallel to AB, and let the circle touch the semicircles on AB, AC, CB in D,
E, F respectively.

Join AG, GD and BH, HD. Then, by Prop. 1, AGD, BHD are straight lines.

For a like reason AEH, BFG are straight lines, as also are CEO, CFH.

Let AD meet the semicircle on AC in I, and let BD meet the semicircle on CB in K. Join CI, CK meeting AE, BF
respectively in L, M, and let GL, HM produced meet AB in N, P respectively.

Now, in the triangle AGG, the perpendiculars from A, G on the opposite sides meet in L. Therefore, by the properties of
triangles, GLN is perpendicular to AC.

Similarly HMP is perpendicular to CB.

Again, since the angles at I, K, D are right, CK is parallel to AD, and CI to BD.

Therefore

and

Hence AN : NP = NP : PB,
or AN, NP, PB are in continued proportion*.

Now, in the case where AC =  CB,
AN =  NP =  PB,

whence BP : PN : NA : AB = 4 : 6 : 9 : 19.
Therefore GH = NP =  AB.



And similarly GH can be found when AC: CB is equal to any other given ratio†.

Proposition 7.

If circles be circumscribed about and inscribed in a square, the circumscribed circle is double of the inscribed circle.
For the ratio of the circumscribed to the inscribed circle is equal to that of the square on the diagonal to the square itself,

i.e. to the ratio 2: 1.

Proposition 8.

If AB be any chord of a circle whose centre is O, and if AB be produced to G so that BG is equal to the radius; if further
GO meet the circle in D and be produced to meet the circle a second time in E, the arc AE will be equal to three times the
arc BD.

Draw the chord EF parallel to AB, and join OB, OF.

Then, since the angles OEF, OFE are equal,

Therefore

∠ BOF = 3 ∠ BOD,
so that the arc BF is equal to three times the arc BD.

Hence the arc AE, which is equal to the arc BF, is equal to three times the arc BD*.

Proposition 9.

If in a circle two chords AB, CD which do not pass through the centre intersect at right angles, then

(arc AD) + (arc CB) = (arc AC) + (arc DB).

Let the chords intersect at O, and draw the diameter EF parallel to AB intersecting CD in H. EF will thus bisect CD at right
angles in H, and (arc ED) = (arc EG).

Also EDF, EOF are semicircles, while (arc ED) = (arc EA) + (arc AD).

Therefore (sum of arcs GF, EA, AD) = (arc of a semicircle).

And the arcs AE, BF are equal.

Therefore

(arcs CB) + (arcs AD) = (arc of a semicircle).



Hence the remainder of the circumference, the sum of the arcs AC, DB, is also equal to a semicircle; and the proposition is
proved.

Proposition 10.

Suppose that TA, TB are two tangents to a circle, while TC cuts it. Let BD be the chord through B parallel to TG, and
let AD meet TG in E. Then, if EH be drawn perpendicular to BD, it will bisect it in H.

Let AB meet TG in F, and join BE.

Now the angle TAB is equal to the angle in the alternate segment, i.e.

Hence the triangles EAT, AFT have one angle equal and another (at T) common. They are therefore similar, and
FT : AT = AT : ET.

Therefore

It follows that the triangles EBT, BFT are similar.

Therefore

But the angle TEB is equal to the angle EBD, and the angle TAB was proved equal to the angle EDB.

Therefore ∠ EDB = ∠ EBD.
And the angles at H are right angles.

It follows that BH = HB*.

Proposition 11.

If two chords AB, CD in a circle intersect at right angles in a point O, not being the centre, then



A O2 + BO2 + CO2 + DO2 = (diameter)2.

Draw the diameter CE, and join AG, GB, AD, BE.

Then the angle GAO is equal to the angle GEB in the same segment, and the angles AOG, EBG are right; therefore the
triangles AOG, EBG are similar, and

∠ ACO = ∠ ECB.
It follows that the subtended arcs, and therefore the chords AD, BE, are equal.

Thus

Proposition 12.

If AB be the diameter of a semicircle, and TP, TQ the tangents to it from any point T, and if AQ, BP be joined meeting in
R, then TR is perpendicular to AB.

Let TR produced meet AB in M, and join PA, QB.

Since the angle APB is right,

Add to each side the angle RBQ, and
∠ PAB + ∠ QBA = (exterior) ∠ PRQ.

But ∠ TPR = ∠ PAB, and ∠ TQR = ∠ QBA,
in the alternate segments;
therefore ∠ TPR + ∠ TQR = ∠ PRQ.

It follows from this that TP = TQ = TR.

[For, if PT be produced to O so that TO = TQ, we have
∠ TOQ = ∠ TQO.

And, by hypothesis, ∠ PRQ = ∠ TPR + TQR.



By addition, ∠ POQ + ∠ PRQ = ∠ TPR + OQR.
It follows that, in the quadrilateral OPRQ, the opposite angles are together equal to two right angles. Therefore a circle

will go round OPQR, and T is its centre, because TP = TO = TQ. Therefore TR = TP.]

Thus ∠ TRP = ∠ TPR = ∠ PAM.
Adding to each the angle PRM,

Therefore ∠ APR + ∠ AMR = (two right angles),
whence ∠ AMR = (a right angle)*.

Proposition 13.

If a diameter AB of a circle meet any chord CD, not a diameter, in E, and if AMBN be drawn perpendicular to CD, then
CN = DM†.

Let O be the centre of the circle, and OH perpendicular to CD. Join BM, and produce HO to meet BM in K.

Then CH = HD.
And, by parallels,

since BO = OA,
BK = KM.

Therefore NH= HM.
Accordingly CN = DM.

Proposition 14.

Let AGB be ct semicircle on AB as diameter, and let AD, BE be equal lengths measured along AB from A, B respectively.
On AD, BE as diameters describe semicircles on the side towards O, and on DE as diameter a semicircle on the opposite
side. Let the perpendicular to AB through O, the centre of the first semicircle, meet the opposite semicircles in C, F
respectively.

Then shall the area of the figure bounded by the circumferences of all the semicircles (“which Archimedes calls
‘Salinon’”*) be equal to the area of the circle on CF as diameter†.

By Eucl. II. 10, since ED is bisected at O and produced to A,
EA2 + AD2 = 2 (EO2 + OA2),

and CF= OA + OE = EA.



Therefore
AB2 + DE2 = 4 (EO2 + OA2) = 2 (CF2 + AD2).

But circles (and therefore semicircles) are to one another as the squares on their radii (or diameters).

Therefore

(sum of semicircles on AB, DE) = (circle on CF) + (sum of semicircles on AD, BE).

Therefore

(area of ‘salinon’) = (area of circle on CF as diam.).

Proposition 15.

Let AB he the diameter of a circle, AC a side of an inscribed regular pentagon, D the middle paint of the arc AG. Join
CD and produce it to meet BA produced in E; join AC, DB meeting in F, and draw FM perpendicular to AB. Then

EM = (radius of circle)*.
Let O be the centre of the circle, and join DA, DM, DO, CB.

Now ∠ ABC =  (right angle),

and ∠ ABD = ∠ DBC =  (right angle),

whence ∠ AOD =  (right angle).

Further, the triangles FCB, FMB are equal in all respects.

Therefore, in the triangles DCB, DMB, the sides CB, MB being equal and BD common, while the angles GBD, MBD are
equal,

∠ BCD = ∠ BMD =  (right angle).

But

so that ∠ DAE = ∠ BCD,



and ∠ BAD = ∠ AMD.
Therefore AD = MD.
Now, in the triangle DMO,

∠ MOD =  (right angle),

∠ DMO =  (right angle).

Therefore ∠ ODM =  (right angle) = AOD;
whence OM = MD.

Again

Therefore, in the triangles EDA, ODM,
∠ EDA = ∠ ODM,
∠ EAD = ∠ OMD,

and the sides AD, MD are equal.

Hence the triangles are equal in all respects, and
EA = MO.

Therefore EM = AO.

Moreover DE = DO; and it follows that, since DE is equal to the side of an inscribed hexagon, and DC is the side of an
inscribed decagon, EC is divided at D in extreme and mean ratio [i.e. EC : ED = ED : DC] ; “and this is proved in the book of
the Elements.” [Eucl. XIII. 9, “If the side of the hexagon and the side of the decagon inscribed in the same circle be put
together, the whole straight line is divided in extreme and mean ratio, and the greater segment is the side of the hexagon.”]

* Pappus assumes the result of this proposition in connexion with the ρβηλος (p. 214, ed. Hultsch), and he proves it for the case where the circles touch externally (p.
840).

* The segment in the figure of the ms. appears to have been a semicircle, though the proposition is equally true of any segment. But the case where the segment is a
semicircle brings the proposition into close connexion with a proposition in Ptolemy’s μ γάλη σúνταξis, I. 9 (p. 31, ed. Halma; cf. the reproduction in Cantor’s Gesch. d.
Mathematik , I. (1894), p. 389). Ptolemy’s object is to connect by an equation the lengths of the chord of an arc and the chord of half the arc. Substantially his procedure is
as follows. Suppose AP, PQ to be equal arcs, AB the diameter through A; and let AP, PQ, AQ, PB, QB be joined. Measure BD along BA equal to BQ. The perpendicular
PN is now drawn, and it is proved that PA = PD, and AN = ND.

Then

And, by similar triangles, AN : A P = AP : AB.

Therefore

This gives AP terms of AQ and the known diameter AB. If we divide by AB2 throughout, it is seen at once that the proposition gives a geometrical proof of the formula

The case where the segment is a semicircle recalls also the method used by Archimedes at the beginning of the second part of Prop. 3 of the Measurement of a
circle. It is there proved that, in the figure above,

AB + BQ : AQ = BP : PA,

or, if we divide the first two terms of the proposition by AB,

* ρβηλος is literally ‘a shoemaker’s knife.’ Cf. note attached to the remarks on the Liber Assumptorum in the Introduction, Chapter II.
* The property upon which this result depends, viz. that

AB : BC = AC : HE,

appears as an intermediate step in a proposition of Pappus (p. 230, ed. Hultsch) which proves that, in the figure above,

AB : BC = CE2 : HE2.

The truth of the latter proposition is easily seen. For, since the angle CEH is a right angle, and EG is perpendicular to CH,



* This same property appears incidentally in Pappus (p. 226) as an intermediate step in the proof of the “ancient proposition” alluded to below.
† In general, if AC: OB=λ: 1, we have

BP : PN : NA : AB = 1 : λ : λ2 : (I + λ + λ2),

and GH : AB = λ : (1 + λ + λ2).

It may be interesting to add the enunciation of the “ancient proposition” stated by Pappus (p. 208) and proved by him after several auxiliary lemmas.

Let an ρβηλος be formed by three semicircles on AB, AC, CB as diameters, and let a series of circles be described, the first of which touches all three semicircles,
while the second touches the first and two of the semicircles forming one end of the ρβηλος, the third touches the second and the same two semicircles, and so on. Let
the diameters of the successive circles be d1, d2, d3,… their centres O1, O2, O3,… and O1N1, O2N2, O3N3,… the perpendiculars from the centres on AB. Then it is to
be proved that

O1N1= d1,

O2N2= 2d2,

O3N3= 3d3,

…........

OnNn= ndn,

* This proposition gives a method of reducing the triseotion of any angle, i.e. of any circular arc, to a problem of the kind known as ν ύσ ις. Suppose that AE is the arc
to be trisected, and that ED is the diameter through E of the circle of which AE is an arc. In order then to find an arc equal to one-third of AE, we have only to draw
through A a line ABC, meeting the circle again in B and ED produced in C> such that BC is equal to the radius of the circle . For a discussion of this and other ν
ύσ ις see the Introduction, Chapter V.

* The figure of this proposition curiously recalls the figure of a problem given by Pappus (pp. 836—8) among his lemmas to the first Book of the treatise of Apollonius
On Contacts(π ρì έπαϕ ν). The problem is, Given a circle and two points E, F(neither of which is necessarily, as in this case, the middle point of the chord of the circle
drawn through E, F), to draw through E, F respectively two chords AD, AB having a common extremity A and such that DB is parallel to EF . The analysis is as
follows. Suppose the problem solved, BD being parallel to FE. Let BT, the tangent at B, meet EF produced in T. (T is not in general the pole of AB, so that TA is not
generally the tangent at A.)

Then

Therefore A, E, B, T are concyclic, and
EF . FT = AF . FB.

But, the circle ADB and the point F being given, the rectangle AF.FB is given. Also EF is given.

Hence FT is known.

Thus, to make the construction, we have only to find the length of FT from the data, produce EF to T so that FT has the ascertained length, draw the tangent TB, and
then draw BD parallel to EF. DE, BF will then meet in A on the circle and will be the chords required.

* TM is of course the polar of the intersection of PQ, AB, as it is the line joining the poles of PQ, AB respectively.
† This proposition is of course true whether M, N lie on CD or on CD produced each way. Pappus proves it for the latter case in his first lemma (p. 788) to the second

Book of Apollonius’ ν ύσις.
* For the explanation of this name see note attached to the remarks on the Liber Assumptorum in the Introduction, Chapter II. On the grounds there given at length I

believe σάλινον to be simply a Graecised form of the Latin word salinum, ‘salt-cellar.’
† Cantor (Gesch. d. Mathematik , I. p. 280) compares this proposition with Hippocrates’ attempt to square the circle by means of lunes, but points out that the object of

Archimedes may have been the converse of that of Hippocrates. For, whereas Hippocrates wished to find the area of a circle from that of other figures of the same sort,
Archimedes’ intention was possibly to equate the area of figures bounded by different curves to that of a circle regarded as already known.

* Pappus gives (p. 418) a proposition almost identical with this among the lemmas required for the comparison of the five regular polyhedra. His enunciation is
substantially as follows. If DH be half the side of a pentagon inscribed in a circle, while DH is perpendicular to the radius OHA, and if HM be made equal to AH, then OA
is divided at M in extreme and mean ratio, OM being the greater segment.

In the course of the proof it is first shown that AD, DM, MO are all equal, as in the proposition above.

Then, the triangles ODA, DAM being similar,
OA : AD = AD : AM,

or (since AD = OM) OA : OM = OM : MA.



THE CATTLE-PBOBLEM.

IT is required to find the number of bulls and cows of each of four colours, or to find 8 unknown quantities. The first part of the
problem connects the unknowns by seven simple equations; and the second part adds two more conditions to which the
unknowns must be subject.

Let W, w be the numbers of white bulls and cows respectively,

First part.

Second part.

[There is an ambiguity in the language which expresses the condition (θ). Literally the lines mean “When the white bulls
joined in number with the black, they stood firm ( µπ δον) with depth and breadth of equal measurement (ìσóµ τροτ ìς βάθος 
ìς úρóς τ ); and the plains of Thrinakia, far-stretching all ways, were filled with their multitude’ (reading, with Krumbiegel,

πλήθους instead of πλίνθου). Considering that, if the bulls were packed together so as to form a square figure, the number of
them need not be a square number, since a bull is longer than it is broad, it is clear that one possible interpretation would be to
take the ‘square’ to be a square figure, and to understand condition (θ) to be simply

W + X = a rectangle (i.e. a product of two factors).

The problem may therefore be stated in two forms:
(1) the simpler one in which, for the condition (θ), there is substituted the mere requirement that

W + X = a product of two whole numbers;

(2) the complete problem in which all the conditions have to be satisfied including the requirement (θ) that
W + X = a square number.

The simpler problem was solved by Jul. Fr. Wurm and may be called

Wurm’s Problem.

The solution of this is given (together with a discussion of the complete problem) by Amthor in the Zeitschrift für Math. u.
Physik (Hist litt. Abtheilung), XXV. (1880), p. 156 sqq.

Multiply (α) by 336, (β) by 280, (γ) by 126, and add; thus

Then from (γ) and (β) we obtain



and

Again, if we multiply (δ) by 4800, ( ) by 2800, (ζ) by 1260, (η) by 462, and add, we obtain
4657w = 2800X + 1260Z + 462Y + 143W;

and, by means of the values in (α′), (β′), (γ′), we derive
297 . 4657w = 2402120Y,

or
Hence, by means of (η), (ζ), ( ), we have

and
And, since all the unknowns must be whole numbers, we see from the equations (α′), (β′),… (η′) that Y must be divisible by
34.11.4657, i.e. we may put

Y = 34 . 11 . 4657n = 4149387n.

Therefore the equations (α′), (β′),…(η′) give the following values for all the unknowns in terms of n, viz.

If now n = 1, the numbers are the smallest which will satisfy the seven equations (α), (β),…(η); and we have next to find
such an integral value for n that the equation (ι) will be satisfied also. [The modified equation (θ) requiring that W + X must be
a product of two factors is then simultaneously satisfied.]

Equation (ι) requires that

where q is some positive integer.

Putting for Y, Z their values as above ascertained, we have

Now q is either even or odd, so that either q = 2s, or q = 2s − 1, and the equation becomes
s (2s ± 1) = 7 .353 . 4657n.

As n need not be a prime number, we suppose n = u·v, where u is the factor in n which divides s without a remainder and v
the factor which divides 2s ± 1 without a remainder; we then have the following sixteen alternative pairs of simultaneous
equations:



In order to find the least value of n which satisfies all the conditions of the problem, we have to choose from the various
positive integral solutions of these pairs of equations that particular one which gives the smallest value for the product uv or n.

If we solve the various pairs and compare the results, we find that it is the pair of equations
s = 7u, 2s – 1 = 353.4657v,

which leads to the solution we want; this solution is then
u = 117423, v = 1,

so that n = uv = 117423 = 33 . 4349,
whence it follows that

s = 7u = 821961,

and q = 2s – 1 = 1643921.
Thus

which is a triangular number, as required.

The number in equation (θ) which has to be the product of two integers is now

which is a rectangular number with nearly equal factors.

The solution is then as follows (substituting for n its value 117423):



The complete problem.

In this case the seven original equations (α), (β),…(η) have to be satisfied, and the following further conditions must hold,

W + X = a square number = p2, say,

Y + Z = a triangular number = , say.

Using the values found above (A), we have in the first place

and this equation will be satisfied if
n = 3 . 11 . 29 . 4657ξ2 = 4456749ξ2,

where ξ is any integer.

Thus the first 8 equations (α), (β),…(η), (θ) are satisfied by the following values:

It remains to determine ξ so that equation (ι) may be satisfied, i.e. so that

Substituting the ascertained values of Y, Z, we have



Multiply by 8, and put
2q + 1 = t, 2. 4657 . ξ = u,

and we have the “Pellian” equation
t2 – 1 = 2 .3 . 7 . 11. 29 . 353. u2,

that is, t2 – 4729494u2 = 1.

Of the solutions of this equation the smallest has to be chosen for which u is divisible by 2.4657.

When this is done,
 and is a whole number;

whence, by substitution of the value of ζ so found in the last system of equations, we should arrive at the solution of the
complete problem.

It would require too much space to enter on the solution of the “Pellian” equation
t2 – 4729494 u2 = 1,

and the curious reader is referred to Amthor’s paper itself. Suffice it to say that he develops  in the form of a
continued fraction as far as the period which occurs after 91 convergents, and, after an arduous piece of work, arrives at the
conclusion that

where  represents the fact that there are 206541 more digits to follow, and that, with the same notation,
the whole number of cattle = 7766 .

One may well be excused for doubting whether Archimedes solved the complete problem, having regard to the enormous
size of the numbers and the great difficulties inherent in the work. By way of giving an idea of the space which would be
required for merely writing down the results when obtained, Amthor remarks that the large seven-figured logarithmic tables
contain on one page 50 lines with 50 figures or so in each, say altogether 2500 figures; therefore one of the eight unknown
quantities would, when found, occupy 82  such pages, and to write down all the eight numbers would require a volume of 660
pages!]



THE METHOD OF ARCHIMEDES



INTRODUCTORY NOTE

FROM the point of view of the student of Greek mathematics there has been, in recent years, no event comparable in interest
with the discovery by Heiberg in 1906 of a Greek MS. containing, among other works of Archimedes, substantially the whole
of a treatise which was formerly thought to be irretrievably lost.

The full description of the MS. as given in the preface to Vol. I. (1910) of the new edition of Heiberg’s text of Archimedes
now in course of publication is—

Codex rescriptus Metochii Constantinopolitani S. Sepulchri monasterii Hierosolymitani 355, 4to.

Heiberg has told the story of his discovery of this MS. and given a full description of it*. His attention having been called
to a notice in Vol. IV. (1899) of the ‘I ροσολuµıτıη βιβλιοθκη of Papadopulos Kerameus relating to a palimpsest of
mathematical content, he at once inferred from a few specimen lines which were quoted that the MS. must contain something by
Archimedes. As the result of inspection, at Constantinople, of the MS. itself, and by means of a photograph taken of it, he was
able to see what it contained and to decipher much of the contents. This was in the year 1906, and he inspected the MS. once
more in 1908. With the exception of the last leaves, 178 to 185, which are of paper of the 16th century, the MS. is of parchment
and contains writings of Archimedes copied in a good hand of the 10th century, in two columns. An attempt was made
(fortunately with only partial success) to wash out the old writing, and then the parchment was used again, for the purpose of
writing a Euchologion thereon, in the 12 th—13th or 13th—14th centuries. The earlier writing appears with more or less
clearness on most of the 177 leaves; only 29 leaves are destitute of any trace of such writing; from 9 more it was hopelessly
washed off; on a few more leaves only a few words can be made out; and again some 14 leaves have old writing upon them in
a different hand and with no division into columns. All the rest is tolerably legible with the aid of a magnifying glass. Of the
treatises of Archimedes which are found in other MSS., the new MS. contains, in great part, the books On the Sphere and
Cylinder, almost the whole of the work On Spirals, and some parts of the Measurement of a Circle  and of the books On the
Equilibrium of Planes. But the important fact is that it contains (1) a considerable proportion of the work On Floating Bodies
which was formerly supposed to be lost so far as the Greek text is concerned and only to have survived in the translation by
Wilhelm von Morbeke, and (2), most precious of all, the greater part of the book called, according to its own heading,
’′Eϕοδος and elsewhere, alternatively, ’Eϕóδιον or ’Eϕοδικóν, meaning Method. The portion of this latter work contained in
the MS. has already been published by Heiberg (1) in Greek* and (2) in a German translation with commentary by Zeuthen†.
The treatise was formerly only known by an allusion to it in Suidas, who says that Theodosius wrote a commentary upon it; but
the Metrica of Heron, newly discovered by R. Schone and published in 1903, quotes three propositions from it‡, including the
two main propositions enunciated by Archimedes at the beginning as theorems novel in character which the method furnished a
means of investigating. Lastly the MS. contains two short propositions, in addition to the preface, of a work called Stomachion
(as it might be “Neck-Spiel” or “Quäl-Geist”) which treated of a sort of Chinese puzzle known afterwards by the name of
“loculus Archimedius” ; it thus turns out that this puzzle, which Heiberg was formerly disinclined to attribute to Archimedes §,
is really genuine.

The Method, so happily recovered, is of the greatest interest for the following reason. Nothing is more characteristic of the
classical works of the great geometers of Greece, or more tantalising, than the absence of any indication of the steps by which
they worked their way to the discovery of their great theorems. As they have come down to us, these theorems are finished
masterpieces which leave no traces of any rough-hewn stage, no hint of the method by which they were evolved. We cannot but
suppose that the Greeks had some method or methods of analysis hardly less powerful than those of modern analysis; yet, in
general, they seem to have taken pains to clear away all traces of the machinery used and all the litter, so to speak, resulting
from tentative efforts, before they permitted themselves to publish, in sequence carefully thought out, and with definitive and
rigorously scientific proofs, the results obtained. A partial exception is now furnished by the Method; for here we have a sort
of lifting of the veil, a glimpse of the interior of Archimedes’ workshop as it were. He tells us how he discovered certain
theorems in quadrature and cubature, and he is at the same time careful to insist on the difference between (1) the means which
may be sufficient to suggest the truth of theorems, although not furnishing scientific proofs of them, and (2) the rigorous
demonstrations of them by irrefragable geometrical methods which must follow before they can be finally accepted as
established ; to use Archimedes’ own terms, the former enable theorems to be investigated (θ ωρ îν) but not to be proved
(àποδ ικνúναι). The mechanical method, then, used in our treatise and shown to be so useful for the discovery of theorems is
distinctly said to be incapable of furnishing proofs of them ; and Archimedes promises to add, as regards the two main
theorems enunciated at the beginning, the necessary supplement in the shape of the formal geometrical proof. One of the two
geometrical proofs is lost, but fragments of the other are contained in the MS. which are sufficient to show that the method was
the orthodox method of exhaustion in the form in which Archimedes applies it elsewhere, and to enable the proof to be
reconstructed.



The rest of this note will be best understood after the treatise itself has been read; but the essential features of the
mechanical method employed by Archimedes are these. Suppose X to be a plane or solid figure, the area or content of which
has to be found. The method is to weigh infinitesimal elements of X (with or without the addition of the corresponding elements
of another figure C) against the corresponding elements of a figure B, B and C being such figures that their areas or volumes,
and the position of the centre of gravity of B, are known beforehand. For this purpose the figures are first placed in such a
position that they have, as common diameter or axis, one and the same straight line; if then the infinitesimal elements are
sections of the figures made by parallel planes perpendicular (in general) to the axis and cutting the figures, the centres of
gravity of all the elements lie at one point or other on the common diameter or axis. This diameter or axis is produced and is
imagined to be the bar or lever of a balance. It is sufficient to take the simple case where the elements of X alone are weighed
against the elements of another figure B. The elements which correspond to one another are the sections of X and B respectively
by any one plane perpendicular (in general) to the diameter or axis and cutting both figures; the elements are spoken of as
straight lines in the case of plane figures and as plane areas in the case of solid figures. Although Archimedes calls the
elements straight lines and plane areas respectively, they are of course, in the first case, indefinitely narrow strips (areas) and,
in the second case, indefinitely thin plane laminae (solids); but the breadth or thickness (dx, as we might call it) does not enter
into the calculation because it is regarded as the same in each of the two corresponding elements which are separately weighed
against each other, and therefore divides out. The number of the elements in each figure is infinite, but Archimedes has no need
to say this; he merely says that X and B are made up of all the elements in them respectively, i.e. of the straight lines in the case
of areas and of the plane areas in the case of solids.

The object of Archimedes is so to arrange the balancing of the elements that the elements of X are all applied at one point
of the lever, while the elements of B operate at different points, namely where they actually are in the first instance. He
contrives therefore to move the elements of X away from their first position and to concentrate them at one point on the lever,
while the elements of B are left where they are, and so operate at their respective centres of gravity. Since the centre of gravity
of B as a whole is known, as well as its area or volume, it may then be supposed to act as one mass applied at its centre of
gravity; and consequently, taking the whole bodies X and B as ultimately placed respectively, we know the distances of the two
centres of gravity from the fulcrum or point of suspension of the lever, and also the area or volume of B. Hence the area or
volume of X is found. The method may be applied, conversely, to the problem of finding the centre of gravity of X when its area
or volume is known beforehand; in this case it is necessary that the elements of X, and therefore X itself, should be weighed in
the places where they are , and that the figures the elements of which are moved to one single point of the lever, to be weighed
there, should be other figures and not X.

The method will be seen to be, not integration, as certain geometrical proofs in the great treatises actually are, but a clever
device for avoiding the particular integration which would naturally be used to find directly the area or volume required, and
making the solution depend, instead, upon another integration the result of which is already known. Archimedes deals with
moments about the point of suspension of the lever, i.e. the products of the elements of area or volume into the distances
between the point of suspension of the lever and the centres of gravity of the elements respectively; and, as we said above,
while these distances are different for all the elements of B, he contrives, by moving the elements of X, to make them the same
for all the elements of X in their final position. He assumes, as known, the fact that the sum of the moments of each particle of
the figure B acting at the point where it is placed is equal to the moment of the whole figure applied as one mass at one point,
its centre of gravity.

Suppose now that the element of X is u · dx, u being the length or area of a section of X by one of a whole series of parallel
planes cutting the lever at right angles, x being measured along the lever (which is the common axis of the two figures) from the
point of suspension of the lever as origin. This element is then supposed to be placed on the lever at a constant distance, say a,
from the origin and on the opposite side of it from B. If u′ · dx is the corresponding element of B cut off by the same plane and x
its distance from the origin, Archimedes’ argument establishes the equation

Now the second integral is known because the area or volume of the figure B (say a triangle, a pyramid, a prism, a sphere, a
cone, or a cylinder) is known, and it can be supposed to be applied as one mass at its centre of gravity, which is also known;
the integral is equal to bU, where b is the distance of the centre of gravity from the point of suspension of the lever, and U is
the area or content of B. Hence

the area or volume of 

In the case where the elements of X are weighed along with the corresponding elements of another figure C against
corresponding elements of B, we have, if υ be the element of C, and V its area or content,



and (area or volume of X + V) a = bU.

In the particular problems dealt with in the treatise h is always = 0, and k is often, but not always, equal to a.

Our admiration of the genius of the greatest mathematician of antiquity must surely be increased, if that were possible, by a
perusal of the work before us. Mathematicians will doubtless agree that it is astounding that Archimedes, writing (say) about
250 B.C., should have been able to solve such problems as those of finding the volume and the centre of gravity of any segment
of a sphere, and the centre of gravity of a semicircle, by a method so simple, a method too (be it observed) which would be
quite rigorous enough for us to-day, although it did not satisfy Archimedes himself.

Apart from the mathematical content of the book, it is interesting, not only for Archimedes’ explanations of the course
which his investigations took, but also for the allusion to Democritus as the discoverer of the theorem that the volumes of a
pyramid and a cone are one-third of the volumes of a prism and a cylinder respectively which have the same base and equal
height. These propositions had always been supposed to be due to Eudoxus, and indeed Archimedes himself has a statement to
this effect*. It now appears that, though Eudoxus was the first to prove them scientifically, Democritus was the first to assert
their truth. I have elsewhere † made a suggestion as to the probable course of Democritus’ argument, which, on Archimedes’
view, did not amount to a proof of the propositions; but it may be well to re-state it here. Plutarch, in a well-known passage ‡,
speaks of Democritus as having raised the following question in natural philosophy (ϕνσικŵς) : “if a cone were cut by a plane
parallel to the base [by which is clearly meant a plane indefinitely near to the base], what must we think of the surfaces of the
sections? Are they equal or unequal? For, if they are unequal, they will make the cone irregular, as having many indentations,
like steps, and unevennesses; but, if they are equal, the sections will be equal, and the cone will appear to have the property of
the cylinder and to be made up of equal, not unequal, circles, which is very absurd.” The phrase “made up of equal… circles”
(έξ σων συγκ ίμ νος…κύκλων) shows that Democritus already had the idea of a solid being the sum of an infinite number of
parallel planes, or indefinitely thin laminae, indefinitely near together : a most important anticipation of the same thought which
led to such fruitful results in Archimedes. If then we may make a conjecture as to Democritus’ argument with regard to a
pyramid, it seems probable that he would notice that, if two pyramids of the same height and with equal triangular bases are
respectively cut by planes parallel to the base and dividing the heights in the same ratio, the corresponding sections of the two
pyramids are equal, whence he would infer that the pyramids are equal because they are the sums of the same infinite numbers
of equal plane sections or indefinitely thin laminae. (This would be a particular anticipation of Cavalieri’s proposition that the
areal or solid contents of two figures are equal if two sections of them taken at the same height, whatever the height may be,
always give equal straight lines or equal surfaces respectively.) And Democritus would of course see that the three pyramids
into which a prism on the same base and of equal height with the original pyramid is divided (as in Eucl. XII. 7) satisfy, in
pairs, this test of equality, so that the pyramid would be one third part of the prism. The extension to a pyramid with a
polygonal base would be easy. And Democritus may have stated the proposition for the cone (of course without an absolute
proof) as a natural inference from the result of increasing indefinitely the number of sides in a regular polygon forming the base
of a pyramid.

In accordance with the plan adopted in The Works of Archimedes , I have marked by inverted commas the passages which,
on account of their importance, historically or otherwise, I have translated literally from the Greek; the rest of the tract is
reproduced in modern notation and phraseology. Words and sentences in square brackets represent for the most part Heiberg’s
conjectural restoration (in his German translation) of what may be supposed to have been written in the places where the MS.
is illegible; in a few cases where the gap is considerable a note in brackets indicates what the missing passage presumably
contained and, so far as necessary, how the deficiency may be made good.

T. L. H.

7 June 1912.



THE METHOD OF ARCHIMEDES TREATING OF MECHANICAL PROBLEMS
—TO ERATOSTHENES

“Archimedes to Eratosthenes greeting.

I sent you on a former occasion some of the theorems discovered by me, merely writing out the enunciations and inviting
you to discover the proofs, which at the moment I did not give. The enunciations of the theorems which I sent were as follows.

1. If in a right prism with a parallelogrammic base a cylinder be inscribed which has its bases in the opposite
parallelograms*, and its sides [i.e. four generators] on the remaining planes (faces) of the prism, and if through the centre of the
circle which is the base of the cylinder and (through) one side of the square in the plane opposite to it a plane be dtawn, the
plane so drawn will cut off from the cylinder a segment which is bounded by two planes and the surface of the cylinder, one of
the two planes being the plane which has been drawn and the other the plane in which the base of the cylinder is, and the
surface being that which is between the said planes; and the segment cut off from the cylinder is one sixth part of the whole
prism.

2. If in a cube a cylinder be inscribed which has its bases in the opposite parallelograms† and touches with its surface the
remaining four planes (faces), and if there also be inscribed in the same cube another cylinder which has its bases in other
parallelograms and touches with its surface the remaining four planes (faces), then the figure bounded by the surfaces of the
cylinders, which is within both cylinders, is two-thirds of the whole cube.

Now these theorems differ in character from those communicated before; for we compared the figures then in question,
conoids and spheroids and segments of them, in respect of size, with figures of cones and cylinders: but none of those figures
have yet been found to be equal to a solid figure bounded by planes; whereas each of the present figures bounded by two
planes and surfaces of cylinders is found to be equal to one of the solid figures which are bounded by planes. The proofs then
of these theorems I have written in this book and now send to you. Seeing moreover in you, as I say, an earnest student, a man
of considerable eminence in philosophy, and an admirer [of mathematical inquiry], I thought fit to write out for you and explain
in detail in the same book the peculiarity of a certain method, by which it will be possible for you to get a start to enable you to
investigate some of the problems in mathematics by means of mechanics. This procedure is, I am persuaded, no less useful
even for the proof of the theorems themselves; for certain things first became clear to me by a mechanical method, although they
had to be demonstrated by geometry afterwards because their investigation by the said method did not furnish an actual
demonstration. But it is of course easier, when we have previously acquired, by the method, some knowledge of the questions,
to supply the proof than it is to find it without any previous knowledge. This is a reason why, in the case of the theorems the
proof of which Eudoxus was the first to discover, namely that the cone is a third part of the cylinder, and the pyramid of the
prism, having the same base and equal height, we should give no small share of the credit to Democritus who was the first to
make the assertion with regard to the said figure* though he did not prove it. I am myself in the position of having first made the
discovery of the theorem now to be published [by the method indicated], and I deem it necessary to expound the method partly
because I have already spoken of it † and I do not want to be thought to have uttered vain words, but equally because I am
persuaded that it will be of no little service to mathematics; for I apprehend that some, either of my contemporaries or of my
successors, will, by means of the method when once established, be able to discover other theorems in addition, which have
not yet occurred to me.

First then I will set out the very first theorem which became known to me by means of mechanics, namely that

Any segment of a section of a right-angled cone (i.e. a parabola) is four-thirds of the triangle which has the same base
and equal height,
and after this I will give each of the other theorems investigated by the same method. Then, at the end of the book, I will give
the geometrical [proofs of the propositions]…

[I premise the following propositions which I shall use in the course of the work.]

1. If from [one magnitude another magnitude be subtracted which has not the same centre of gravity, the centre of gravity
of the remainder is found by] producing [the straight line joining the centres of gravity of the whole magnitude and of the
subtracted part in the direction of the centre of gravity of the whole] and cutting off from it a length which has to the distance
between the said centres of gravity the ratio which the weight of the subtracted magnitude has to the weight of the remainder.

[On the Equilibrium of Planes, I. 8]

2. If the centres of gravity of any number of magnitudes whatever be on the same straight line, the centre of gravity of the
magnitude made up of all of them will be on the same straight line. [Cf. Ibid. I. 5]

3. The centre of gravity of any straight line is the point of bisection of the straight line. [Cf. Ibid. I. 4]



4. The centre of gravity of any triangle is the point in which the straight lines drawn from the angular points of the triangle
to the middle points of the (opposite) sides cut one another. [Ibid. I. 13, 14]

5. The centre of gravity of any parallelogram is the point in which the diagonals meet. [Ibid. I. 10]

6. The centre of gravity of a circle is the point which is also the centre [of the circle].

7. The centre of gravity of any cylinder is the point of bisection of the axis.

8. The centre of gravity of any cone is [the point which divides its axis so that] the portion [adjacent to the vertex is] triple
[of the portion adjacent to the base].

[All these propositions have already been] proved*. [Besides these I require also the following proposition, which is
easily proved:

If in two series of magnitudes those of the first series are, in order, proportional to those of the second series and further]
the magnitudes [of the first series], either all or some of them, are in any ratio whatever [to those of a third series], and if the
magnitudes of the second series are in the same ratio to the corresponding magnitudes [of a fourth series], then the sum of the
magnitudes of the first series has to the sum of the selected magnitudes of the third series the same ratio which the sum of the
magnitudes of the second series has to the sum of the (correspondingly) selected magnitudes of the fourth series. [On Conoids
and Spheroids, Prop. 1.]”

Proposition 1.

Let ABC be a segment of a parabola bounded by the straight line AC and the parabola ABC, and let D be the middle point of
AC. Draw the straight line DBE parallel to the axis of the parabola and join AB, BC.

Then shall the segment ABC be  of the triangle ABC.

From A draw AKF parallel to DE, and let the tangent to the parabola at C meet DBE in E and AKF in F. Produce CB to
meet AF in K, and again produce CK to H, making KH equal to CK.

Consider CH as the bar of a balance, K being its middle point.

Let MO be any straight line parallel to ED, and let it meet CF, CK, AO in M, N, O and the curve in P.

Now, since CE is a tangent to the parabola and CD the semi-ordinate,
EB = BD;

“for this is proved in the Elements [of Conics]*.”

Since FA, MO are parallel to ED, it follows that
FK = KA, MN = No.

Now, by the property of the parabola, “proved in a lemma,”



Take a straight line TG equal to OP, and place it with its centre of gravity at H, so that TH = EG; then, since N is the centre
of gravity of the straight line MO,

and MO : TG = HK : KN,
it follows that TG at H and MO at N will be in equilibrium about K. [On the Equilibrium of Planes, I. 6, 7]

Similarly, for all other straight lines parallel to DE and meeting the arc of the parabola, (1) the portion intercepted between
FO, AC with its middle point on KC and (2) a length equal to the intercept between the curve and AC placed with its centre of
gravity at H will be in equilibrium about K.

Therefore K is the centre of gravity of the whole system consisting (1) of all the straight lines as MO intercepted between
FC, AC and placed as they actually are in the figure and (2) of all the straight lines placed at H equal to the straight lines as PO
intercepted between the curve and AC.

And, since the triangle CFA is made up of all the parallel lines like MO,
and the segment CBA is made up of all the straight lines like PO within the curve,

it follows that the triangle, placed where it is in the figure, is in equilibrium about K with the segment CBA placed with its
centre of gravity at H.

Divide KC at W so that CK = 3KW;
then W is the centre of gravity of the triangle ACF; for this is proved in the books on equilibrium” ( ν τοîς ìσορροπικοîς).

[Cf. On the Equilibrium of Planes I. 15]

“Now the fact here stated is not actually demonstrated by the argument used; but that argument has given a sort of indication
that the conclusion is true. Seeing then that the theorem is not demonstrated, but at the same time that the conclusion is true, we
shall have recourse to the geometrical demonstration which I myself discovered and have already published*.”

Proposition 2.

We can investigate by the same method the propositions that

(1) Any sphere is {in respect of solid content) four times the cone with base equal to a great circle of the sphere and
height equal to its radius; and

(2) the cylinder with base equal to a great circle of the sphere and height equal to the diameter is 1  is times the
sphere.

(1) Let ABCD be a great circle of a sphere, and AC, BD diameters at right angles to one another.

Let a circle be drawn about BD as diameter and in a plane perpendicular to AC, and on this circle as base let a cone be
described with A as vertex. Let the surface of this cone be produced and then cut by a plane through C parallel to its base; the
section will be a circle on EF as diameter. On this circle as base let a cylinder be erected with height and axis AC, and
produce CA to H, making AH equal to CA.

Let CH be regarded as the bar of a balance, A being its middle point.

Draw any straight line MN in the plane of the circle ABCD and parallel to BD. Let MN meet the circle in O, P, the diameter
AC in S, and the straight lines AE, AF in Q, R respectively. Join AO.

Through MN draw a plane at right angles to AC; this plane will cut the cylinder in a circle with diameter MN, the sphere in
a circle with diameter OP, and the cone in a circle with diameter QR.

Now, since 



And, since HA = AC,

That is,
HA : AS = (circle in cylinder) : (circle in sphere + circle in cone).

Therefore the circle in the cylinder, placed where it is, is in equilibrium, about A, with the circle in the sphere together
with the circle in the cone, if both the latter circles are placed with their centres of gravity at H.

Similarly for the three corresponding sections made by a plane perpendicular to AC and passing through any other straight
line in the parallelogram LF parallel to EF.

If we deal in the same way with all the sets of three circles in which planes perpendicular to AC cut the cylinder, the sphere
and the cone, and which make up those solids respectively, it follows that the cylinder, in the place where it is, will be in
equilibrium about A with the sphere and the cone together, when both are placed with their centres of gravity at H.

Therefore, since K is the centre of gravity of the cylinder,
HA : AK = (cylinder) : (sphere + cone AEF).

But HA = 2AK;
therefore cylinder = 2 (sphere + cone AEF).

Now cylinder = 3 (cone AEF); [Eucl XII. 10]
therefore cone AEF = 2 (sphere).

But, since EF = 2BD,

cone AEF = 8 (cone ABD);
therefore sphere = 4 (cone ABD).

(2) Through B, D draw VBW, XDY parallel to AC; and imagine a cylinder which has AC for axis and the circles on VX,
WY as diameters for bases.



Then

“From this theorem, to the effect that a sphere is four times as great as the cone with a great circle of the sphere as base and
with height equal to the radius of the sphere, I conceived the notion that the surface of any sphere is four times as great as a
great circle in it; for, judging from the fact that any circle is equal to a triangle with base equal to the circumference and height
equal to the radius of the circle, I apprehended that, in like manner, any sphere is equal to a cone with base equal to the surface
of the sphere and height equal to the radius*.”

Proposition 3.

By this method we can also investigate the theorem that

A cylinder with base equal to the greatest circle in a spheroid and height equal to the acds of the spheroid is  1  times
the spheroid;
and, when this is established, it is plain that

If any spheroid be cut by a plane through the centre and at right angles to the acds, the half of the spheroid is double of
the cone which has the same base and the same axis as the segment (i.e. the half of the spheroid).

Let a plane through the axis of a spheroid cut its surface in the ellipse ABCD, the diameters (i.e. axes) of which are AC, BD;
and let K be the centre.

Draw a circle about BD as diameter and in a plane perpendicular to AC;

imagine a cone with this circle as base and A as vertex produced and cut by a plane through C parallel to its base; the
section will be a circle in a plane at right angles to AC and about EF as diameter.

Imagine a cylinder with the la`tter circle as base and axis AC; produce CA to H, making AH equal to CA.

Let HC be regarded as the bar of a balance, A being its middle point.

In the parallelogram LF draw any straight line MN parallel to EF meeting the ellipse in O, P and AE, AF, AC in Q, R, S
respectively.

If now a plane be drawn through MN at right angles to AC, it will cut the cylinder in a circle with diameter MN, the
spheroid in a circle with diameter OP, and the cone in a circle with diameter QR.

Since HA = AC

Therefore HA : AS = MS2 : MS . SQ.



But, by the property of the ellipse,

therefore

and accordingly SO2 = SQ . QM.

Add SQ2 to each side, and we have
SO2 + SQ2 = SQ . SM.

Therefore, from above, we have

That is,
HA : AS = (circle in cylinder): (circle in spheroid + circle in cone).

Therefore the circle in the cylinder, in the place where it is, is in equilibrium, about A, with the circle in the spheroid and
the circle in the cone together, if both the latter circles are placed with their centres of gravity at H.

Similarly for the three corresponding sections made by a plane perpendicular to AC and passing through any other straight
line in the parallelogram LF parallel to EF.

If we deal in the same way with all the sets of three circles in which planes perpendicular to AC cut the cylinder, the
spheroid and the cone, and which make up those figures respectively, it follows that the cylinder, in the place where it is, will
be in equilibrium about A with the spheroid and the cone together, when both are placed with their centres of gravity at H.

Therefore, since K is the centre of gravity of the cylinder,
HA : AK = (cylinder) : (spheroid + cone AEF).

But HA = 2AK;
therefore cylinder = 2 (spheroid + cone AEF).

And cylinder = 3 (cone AEF); [Eucl. XII. 10]
therefore cone AEF = 2 (spheroid).

But, since EF = 2BD,



cone AEF = 8 (cone ABD);
therefore spheroid = 4 (cone ABD),
and half the spheroid = 2 (cone ABD).

Through B, D draw VBW, XDY parallel to AC; and imagine a cylinder which has AC for axis and the circles on VX, WY as
diameters for bases.

Then cylinder 

Proposition 4.

Any segment of a right-angled conoid (i.e. a ‘paraboloid of revolution) cut off by a plane at right angles to the axis is 1
 times the cone which has the same base and the same acds as the segment

This can be investigated by our method, as follows.

Let a paraboloid of revolution be cut by a plane through the axis in the parabola BAC;
and let it also be cut by another plane at right angles to the axis and intersecting the former plane in BC. Produce DA, the axis of
the segment, to H, making HA equal to AD.

Imagine that HD is the bar of a balance, A being its middle point.

The base of the segment being the circle on BC as diameter and in a plane perpendicular to AD,
imagine (1) a cone drawn with the latter circle as base and A as vertex, and (2) a cylinder with the same circle as base and AD
as axis.

In the parallelogram EC let any straight line MN be drawn parallel to BC, and through MN let a plane be drawn at right
angles to AD; this plane will cut the cylinder in a circle with diameter MN and the paraboloid in a circle with diameter OP.

Now, BAC being a parabola and BD, OS ordinates,
DA : AS = BD2 : OS2,

or HA : AS = MS2 : SO2.

Therefore

HA : AS = (circle, rad. MS) : (circle, rad. OS) = (circle in cylinder) : (circle in paraboloid).

Therefore the circle in the cylinder, in the place where it is, will be in equilibrium, about A, with the circle in the
paraboloid, if the latter is placed with its centre of gravity at H.

Similarly for the two corresponding circular sections made by a plane perpendicular to AD and passing through any other
straight line in the parallelogram which is parallel to BC.



Therefore, as usual, if we take all the circles making up the whole cylinder and the whole segment and treat them in the
same way, we find that the cylinder, in the place where it is, is in equilibrium about A with the segment placed with its centre
of gravity at H.

If K is the middle point of AD, K is the centre of gravity of the cylinder;
therefore HA : AK = (cylinder) : (segment).

Therefore cylinder = 2 (segment).

And cylinder = 3 (cone ABC); [Eucl. XII. 10]
therefore segment =  (cone ABC).

Proposition 5.

The centre of gravity of a segment of a right-angled conoid (i.e. a paraboloid of revolution) cut off by a plane at right
angles to the axis is on the straight Une which is the axis of the segment, and divides the said straight line in such a way
that the portion of it adjacent to the vertex is double of the remaining portion.

This can be investigated by the method, as follows.

Let a paraboloid of revolution be cut by a plane through the axis in the parabola BAC;
and let it also be cut by another plane at right angles to the axis and intersecting the former plane in BC.

Produce DA, the axis of the segment, to H, making HA equal to AD; and imagine DH to be the bar of a balance, its middle
point being A.

The base of the segment being the circle on BC as diameter and in a plane perpendicular to AD,
imagine a cone with this circle as base and A as vertex, so that AB, AC are generators of the cone.

In the parabola let any double ordinate OP be drawn meeting AB, AD, AC in Q, S, R respectively.

Now, from the property of the parabola,

Therefore OS2 = BD . QS,
or BD : OS = OS : QS,
whence BD : QS = OS2: QS2.

But



Therefore

If now through OP a plane be drawn at right angles to AD, this plane cuts the paraboloid in a circle with diameter OP and
the cone in a circle with diameter QR.

We see therefore that

and the circle in the paraboloid, in the place where it is, is in equilibrium about A with the circle in the cone placed with its
centre of gravity at H.

Similarly for the two corresponding circular sections made by a plane perpendicular to AD and passing through any other
ordinate of the parabola.

Dealing therefore in the same way with all the circular sections which make up the whole of the segment of the paraboloid
and the cone respectively, we see that the segment of the paraboloid, in the place where it is, is in equilibrium about A with the
cone placed with its centre of gravity at H.

Now, since A is the centre of gravity of the whole system as placed, and the centre of gravity of part of it, namely the cone,
as placed, is at H, the centre of gravity of the rest, namely the segment, is at a point K on HA produced such that

HA : AK = (segment) : (cone).

But

Therefore HA =  AK;
that is, K divides AD in such a way that AK = 2KD.

Proposition 6.

The centre of gravity of any hemisphere [is on the straight line which] is its axis, and divides the said straight line in
such a way that the portion of it adjacent to the surface of the hemisphere has to the remaining portion the ratio which 5
has to 3.

Let a sphere be cut by a plane through its centre in the circle ABCD;
let AC, BD be perpendicular diameters of this circle, and through BD let a plane be drawn at right angles to AC.

The latter plane will cut the sphere in a circle on BD as diameter.

Imagine a cone with the latter circle as base and A as vertex.

Produce CA to H, making AH equal to CA, and let HC be regarded as the bar of a balance, A being its middle point.



In the semicircle BAD, let any straight line OP be drawn parallel to BD and cutting AC in E and the two generators AB, AD
of the cone in Q, R respectively. Join AO.

Through OP let a plane be drawn at right angles to AC; this plane will cut the hemisphere in a circle with diameter OP and
the cone in a circle with diameter QR.

Now

Therefore the circles with diameters OP, QR, in the places where they are, are in equilibrium about A with the circle with
diameter QR if the latter is placed with its centre of gravity at H.

And, since the centre of gravity of the two circles with diameters OP, QR taken together, in the place where they are, is …..

[There is a lacuna here; but the proof can easily be completed on the lines of the corresponding but more difficult case in
Prop. 8.

We proceed thus from the point where the circles with diameters OP, QR, in the place where they are, balance, about A, the
circle with diameter QR placed with its centre of gravity at H.

A similar relation holds for all the other sets of circular sections made by other planes passing through points on AG and at
right angles to AG.

Taking then all the circles which fill up the hemisphere BAD and the cone ABD respectively, we find that the hemisphere
BAD and the cone ABD, in the places where they are, together balance, about A, a cone equal to ABD placed with its centre of
gravity at H.

Let the cylinder M + N be equal to the cone ABD.

Then, since the cylinder M + N placed with its centre of gravity at H balances the hemisphere BAD and the cone ABD in the
places where they are,
suppose that the portion M of the cylinder, placed with its centre of gravity at H, balances the cone ABD (alone) in the place
where it is; therefore the portion N of the cylinder placed with its centre of gravity at H balances the hemisphere (alone) in the
place where it is.

Now the centre of gravity of the cone is at a point V such that AG = 4GV;
therefore, since M at H is in equilibrium with the cone,

M : (cone) = AG : HA = AC : AC,

whence M =  (cone).

But M + N = (cone); therefore N = (cone).

Now let the centre of gravity of the hemisphere be at W, which is somewhere on AG.

Then, since N at H balances the hemisphere alone,
(hemisphere) : N = HA : AW.

But the hemisphere BAD = twice the cone ABD;
[On the Sphere and Cylinder 1. 34 and Prop. 2 above] and N =  (cone), from above.

Therefore

whence AW = AG, so that W divides AG in such a way that
AW : WG = 5 : 3.]

Proposition 7.

We can also investigate by the same method the theorem that



[Any segment of a sphere has] to the cone [with the same base and height the ratio which the sum of the radius of the
sphere and the height of the complementary segment has to the height of the complementary segment.]

[There is a lacuna here; but all that is missing is the construction, and the construction is easily understood by means of the
figure. BAD is of course the segment of the sphere the volume of which is to be compared with the volume of a cone with the
same base and height.]

The plane drawn through MN and at right angles to AG will cut the cylinder in a circle with diameter MN, the segment of
the sphere in a circle with diameter OP, and the cone on the base EF in a circle with diameter QR.

In the same way as before [cf. Prop. 2] we can prove that the circle with diameter MN, in the place where it is, is in
equilibrium about A with the two circles with diameters OP, QR if these circles are both moved and placed with their centres
of gravity at H.

The same thing can be proved of all sets of three circles in which the cylinder, the segment of the sphere, and the cone with
the common height AG are all cut by any plane perpendicular to AC.

Since then the sets of circles make up the whole cylinder, the whole segment of the sphere and the whole cone respectively,
it follows that the cylinder, in the place where it is, is in equilibrium about A with the sum of the segment of the sphere and the
cone if both are placed with their centres of gravity at H.

Divide AG at W, V in such a way that
AW = WG, AV = 3VG.

Therefore W will be the centre of gravity of the cylinder, and V will be the centre of gravity of the cone.

Since, now, the bodies are in equilibrium as described,

[The rest of the proof is lost; but it can easily be supplied thus.

We have

(cone AEF + segmt. BAD) : 

But (cylinder) :

Therefore, ex aequali,



(cone AEF + segmt. BAD) :

whence (segmt. BAD) : (cone AEF) = ( AC –  AG) : AG.

Again (cone AEF) :

Therefore, ex aequali,
(segment BAD) :

Proposition 8.

[The enunciation, the setting-out, and a few words of the construction are missing.

The enunciation however can be supplied from that of Prop. 9, with which it must be identical except that it cannot refer to
“any segment,” and the presumption therefore is that the proposition was enunciated with reference to one kind of segment
only, i.e. either a segment greater than a hemisphere or a segment less than a hemisphere.

Heiberg’s figure corresponds to the case of a segment greater than a hemisphere. The segment investigated is of course the
segment BAD. The setting-out and construction are self-evident from the figure.]

Produce AC to H, O, making HA equal to AC and CO equal to the radius of the sphere; and let HC be regarded as the bar of
a balance, the middle point being A.

In the plane cutting off the segment describe a circle with G as centre and radius (GE) equal to AG; and on this circle as
base, and with A as vertex, let a cone be described. AE, AF are generators of this cone.

Draw KL, through any point Q on AG, parallel to EF and cutting the segment in K, L, and AE, AF in R, P respectively. Join
AK.



Now

Imagine a circle equal to the circle with diameter PR placed with its centre of gravity at H;
therefore the circles on diameters KL, PR, in the places where they are, are in equilibrium about A with the circle with
diameter PR placed with its centre of gravity at H.

Similarly for the corresponding circular sections made by any other plane perpendicular to AG.

Therefore, taking all the circular sections which make up the segment ABD of the sphere and the cone AEF respectively, we
find that the segment ABD of the sphere and the cone AEF, in the places where they are, are in equilibrium with the cone AEF
assumed to be placed with its centre of gravity at H.

Let the cylinder M + N be equal to the cone AEF which has A for vertex and the circle on EF as diameter for base.

Divide AG at V so that AG = 4VG;

therefore V is the centre of gravity of the cone AEF “for this has been proved before*.”

Let the cylinder M + N be cut by a plane perpendicular to the axis in such a way that the cylinder M (alone), placed with its
centre of gravity at H, is in equilibrium with the cone AEF.

Since M + N suspended at H is in equilibrium with the segment ABD of the sphere and the cone AEF in the places where
they are,
while M, also at H, is in equilibrium with the cone AEF in the place where it is, it follows that

N at H is in equilibrium with the segment ABD of the sphere in the place where it is.

Now (segment ABD of sphere) : (cone ABD) = OG : GC;
“for this is already proved” [Cf. On the Sphere and Cylinder II. 2 Cor. as well as Prop. 7 ante].

And

Therefore, ex aequali,
(segment ABD of sphere) : (cone AEF) = OG : GA.

Take a point W on AG such that
AW : WG = (GA + 4GC) : (GA + 2GC).

We have then, inversely,
GW : WA = (2GC + GA) : (4GC + GA),

and, componendo,
GA : AW = (6GC + 2GA) : (4GC + GA).

But GO =  (6GC + 2GA), [for GO – GC =  (CG + GA)]
and CV =  (4GC + GA);
therefore GA : AW = OG : CV,
and, alternately and inversely,

OG : GA = CV : WA.

It follows, from above, that



(segment ABD o f sphere) : (cone AEF) = CV : WA.

Now, since the cylinder M with its centre of gravity at H is in equilibrium about A with the cone AEF with its centre of
gravity at V,

(cone AEF) : 

and, since the cone AEF = the cylinder M + N, we have, dividendo and invertendo,
(cylinder M) : (cylinder N) = AV : CV.

Hence, componendo,
(cone AEF) : 

But it was proved that

(segment ABD of sphere) : (cone AEF) = CV : WA ; therefore, ex aequali,
(segment ABD of sphere) : (cylinder N) = HA : AW.

And it was above proved that the cylinder N at H is in equilibrium about A with the segment ABD, in the place where it is;
therefore, since H is the centre of gravity of the cylinder N, W is the centre of gravity of the segment ABD of the sphere.

Proposition 9.

In the same way we can investigate the theorem that

The centre of gravity of any segment of a sphere is on the straight line which is the axis of the segment, and divides this
straight line in such a way that the part of it adjacent to the vertex of the segment has to the remaining part the ratio which
the sum of the axis of the segment and four times the axis of the complementary segment has to the sum of the axis of the
segment and double the axis of the complementary segment

[As this theorem relates to “any segment” but states the same result as that proved in the preceding proposition, it follows
that Prop. 8 must have related to one kind of segment, either a segment greater than a semicircle (as in Heiberg’s figure of
Prop. 8) or a segment less than a semicircle; and the present proposition completed the proof for both kinds of segments. It
would only require a slight change in the figure, in any case.]

Proposition 10.

By this method too we can investigate the theorem that

[A segment of an obtuse-angled conoid (i.e. a hyperboloid of revolution) has to the cone which has] the same base [as
the segment and equal height the same ratio as the sum of the acds of the segment and three times] the “annex to the axis”
{i.e. half the transverse axis of the hyperbolic section through the aoois of the hyperboloid or, in other words, the distance
between the vertex of the segment and ike vertex of the enveloping cone) has to the sum of the axis of the segment and
double of the “annex”* [this is the theorem proved in On Conoids and Spheroids , Prop. 25], “and also many other theorems,
which, as the method has been made clear by means of the foregoing examples, I will omit, in order that I may now proceed to
compass the proofs of the theorems mentioned above.”

Proposition 11.

If in a right prism with square bases a cylinder be inscribed having its bases in opposite square faces and touching
with its surface the remaining four parallelogrammic faces, and if through the centre of the circle which is the base of the
cylinder and one side of the opposite square face a plane be drawn, the figure cut off by the plane so drawn is one sixth
part of the whole prism.

“This can be investigated by the method, and, when it is set out, I will go back to the proof of it by geometrical
considerations.”

[The investigation by the mechanical method is contained in the two Propositions, 11,12. Prop. 13 gives another solution



which, although it contains no mechanics, is still of the character which Archimedes regards as inconclusive, since it assumes
that the solid is actually made up of parallel plane sections and that an auxiliary parabola is actually made up of parallel
straight lines in it. Prop. 14 added the conclusive geometrical proof.]

Let there be a right prism with a cylinder inscribed as stated.

Let the prism be cut through the axis of the prism and cylinder by a plane perpendicular to the plane which cuts on the
portion of the cylinder; let this plane make, as section, the parallelogram AB, and let it cut the plane cutting off the portion of
the cylinder (which plane is perpendicular to AB) in the straight line BC.

Let CD be the axis of the prism and cylinder, let EF bisect it at right angles, and through EF let a plane be drawn at right
angles to CD; this plane will cut the prism in a square and the cylinder in a circle.

Let MN be the square and OPQR the circle, and let the circle touch the sides of the square in O, P, Q, R [F, E in the first
figure are identical with O, Q respectively]. Let H be the centre of the circle.

Let KL be the intersection of the plane through EF perpendicular to the axis of the cylinder and the plane cutting off the
portion of the cylinder; KL is bisected by OHQ [and passes through the middle point of HQ].

Let any chord of the circle, as ST, be drawn perpendicular to HQ, meeting HQ in W;
and through ST let a plane be drawn at right angles to OQ and produced on both sides of the plane of the circle OPQR.

The plane so drawn will cut the half cylinder having the semicircle PQR for section and the axis of the prism for height in a
parallelogram, one side of which is equal to ST and another is a generator of the cylinder; and it will also cut the portion of the
cylinder cut off in a parallelogram, one side of which is equal to ST and the other is equal and parallel to UV (in the first
figure).

UV will be parallel to BY and will cut off, along EG in the parallelogram DE, the segment EI equal to QW.

Now, since EG is a parallelogram, and VI is parallel to GC,

And EG = HQ, GI = HW, QH = OH;



therefore OH: HW = (  in half cyl.) : (  in portion).

Imagine that the parallelogram in the portion of the cylinder is moved and placed at O so that O is its centre of gravity, and
that OQ is the bar of a balance, H being its middle point.

Then, since W is the centre of gravity of the parallelogram in the half cylinder, it follows from the above that the
parallelogram in the half cylinder, in the place where it is, with its centre of gravity at W, is in equilibrium ab>ut H with the
parallelogram in the portion of the cylinder when placed with its centre of gravity at O.

Similarly for the other parallelogrammic sections made by any plane perpendicular to OQ and passing through any other
chord in the semicircle PQR perpendicular to OQ.

If then we take all the parallelograms making up the half cylinder and the portion of the cylinder respectively, it follows
that the half cylinder, in the place where it is, is in equilibrium about H with the portion of the cylinder cut off when the latter is
placed with its centre of gravity at O.

Proposition 12.

Let the parallelogram (square) MN perpendicular to the axis, with the circle OPQR and its diameters OQ, PR, be drawn
separately.

Join HG, HM, and through them draw planes at right angles to the plane of the circle, producing them on both sides of that
plane.

This produces a prism with triangular section GHM and height equal to the axis of the cylinder; this prism is  of the
original prism circumscribing the cylinder.

Let LK, UT be drawn parallel to OQ and equidistant from it, cutting the circle in K, T, RP in S, F, and OH, HM in W, V
respectively.

Through LK, UT draw planes at right angles to PR, producing them on both sides of the plane of the circle; these planes
produce as sections in the half cylinder PQR and in the prism GHM four parallelograms in which the heights are equal to the
axis of the cylinder, and the other sides are equal to KS, TF, LW, UV respectively ……………………

…………………………………………

[The rest of the proof is missing, but, as Zeuthen says*, the result obtained and the method of arriving at it are plainly
indicated by the above.

Archimedes wishes to prove that the half cylinder PQR, in the place where it is, balances the prism GHM, in the place
where it is, about H as fixed point.

He has first to prove that the elements (1) the parallelogram with side = KS and (2)the parallelogram with side = LW, in the
places where they are, balance about S, or, in other words that the straight lines SK, LW, in the places where thev are, balance
about S.

Now (radius of circle OPQR)2 = SK2 + SH2,
or SL2 = SK2 + SW2.

Therefore LS2 – SW2 = SK2,
and accordingly (LS + SW) . LW = SK2,



whence  (LS + SW) : SK = SK : LW.

And  is the distance of the centre of gravity of LW from S,
while  is the distance of the centre of gravity of SK from S.

Therefore SK and LW, in the places where they are, balance about S.

Similarly for the corresponding parallelograms.

Taking all the parallelogrammic elements in the half cylinder and prism respectively, we find that the half cylinder PQR
and the prism GUM, in the places where they are respectively, balance about H.

From this result and that of Prop. 11 we can at once deduce the volume of the portion cut off from the cylinder. For in Prop.
11 the portion of the cylinder, placed with its centre of gravity at o, is shown to balance (about H) the half-cylinder in the place
where it is. By Prop. 12 we may substitute for the half-cylinder in the place where it is the prism GHM of that proposition
turned the opposite way relatively to RP. The centre of gravity of the prism as thus placed is at a point (say Z) on HQ such that
HZ = HQ.

Therefore, assuming the prism to be applied at its centre of gravity, we have
(portion of cylinder) : 

therefore (portion of cylinder) =  (prism GHM) =  (original prism).

Note. This proposition of course solves the problem of finding the centre of gravity of a half cylinder or, in other wwds, of
a semicircle.

For the triangle GHM in the place where it is balances, about H, the semicircle PQR in the place where it is.

If then X is the point on HQ which is the centre of gravity of the semicircle,
HO . (Δ GHM) = HX . (semicircle PQR),

or HO . HO2 = HX . π . HO2;
that is,

Proposition 13.

Let there be a right prism with square bases, one of which is ABCD) in the prism let a cylinder be inscribed, the base of
which is the circle EFGH touching the sides of the square ABCD in E, F, G, H.

Through the centre and through the side corresponding to CD in the square face opposite to ABGD let a plane be drawn;
this will cut off a prism equal to  of the original prism and formed by three parallelograms and two triangles, the triangles
forming opposite faces.

In the semicircle EFG describe the parabola which has FK for axis and passes through E, G; draw MN parallel to KF
meeting GE in M, the parabola in L, the semicircle in O and CD in N.



Then MN . NL = NF2;
“for this is clear.” [Cf. Apollonius, Conics I. 11]
[The parameter is of course equal to GK or KF.]

Therefore MN : NL = GK2 : LS2.

Through MN draw a plane at right angles to EG; this will produce as sections (1) in the prism cut off from the whole prism
a right-angled triangle, the base of which is MN, while the perpendicular is perpendicular at N to the plane ABCD and equal to
the axis of the cylinder, and the hypotenuse is in the plane cutting the cylinder, and (2) in the portion of the cylinder cut off a
right-angled triangle the base of which is MO, while the perpendicular is the generator of the cylinder perpendicular at O to the
plane KN, and the hypotenuse is……..

…………………………………………

[There is a lacuna here, to be supplied as follows.

Since

it follows that

But the triangle (1) in the prism is to the triangle (2) in the portion of the cylinder in the ratio of MN2 : MO2.

Therefore

(Δ in prism) : (Δ in portion of cylinder)

= MN : ML

= (straight line in rect. DG) : (straight line in parabola).

We now take all the corresponding elements in the prism, the portion of the cylinder, the rectangle DG and the parabola
EFG respectively;]
and it will follow that
(all the Δ in prism) : (all the Δ in portion of cylinder) = (all the str. lines in  DG) : (all the straight lines between parabola
and EG).

But the prism is made up of the triangles in the prism, [the portion of the cylinder is made up of the triangles in it], the
parallelogram DG of the straight lines in it parallel to KF, and the parabolic segment of the straight lines parallel to KF
intercepted between its circumference and EG;
therefore (prism) : (portion of cylinder) = (  GD) : (parabolic segment EFG).

But  GD =  (parabolic segment EFG);
“for this is proved in my earlier treatise.”

[Quadrature of Parabola]

Therefore prism =  (portion of cylinder).

If then we denote the portion of the cylinder by 2, the prism is 3, and the original prism circumscribing the cylinder is 12
(being 4 times the other prism);

therefore the portion of the cylinder =  (original prism).
Q.E.D.

[The above proposition and the next are peculiarly interesting for the fact that the parabola is an auxiliary curve introduced
for the sole purpose of analytically reducing the required cubature to the known quadrature of the parabola.]

Proposition 14.

Let there be a right prism with square bases [and a cylinder inscribed therein having its base in the square ABGD and
touching its sides at E, F, G, H;



let the cylinder be cut by a plane through EG and the side corresponding to CD in the square face opposite to ABCD].

This plane cuts off from the prism a prism, and from the cylinder a portin of it.

It can be proved that the portion of the cylinder cut off by the plane the is  of the whole prism.

But we will first prove that it is possible to inscribe in the portion cut off from the cylinder, and to circumscribe about it,
solid figures made up of prisms which have equal height and similar triangular bases, in such a way that the circumscribed
figure exceeds the inscribed by less than any assigned magnitude…………………

…………………………………………

But it was proved that

(prism cut off by oblique plane) <  (figure inscribed in portion of cylinder).

Now

(prism cut off) : (inscribed figure) =  DG : ( s inscribed in parabolic segment);
therefore  DG <  ( s in parabolic segment):
which is impossible, since “it has been proved elsewhere” that the parallelogram DG is  of the parabolic segment.

Consequently………………not greater.
…………………………………………

And (all the prisms in prism cut off) : (all prisms in circumscr. figure)

= (all s in  DG)

: (all s in fig. circumscr. about parabolic segmt.); therefore
(prism cut off) : (figure circumscr. about portion of cylinder)

= (  DG) : .(figure circumscr. about parabolic segment).

But the prism cut off by the oblique plane is >  of the solid figure circumscribed about the portion of the
cylinder…………..

…………………………………………

[There are large gaps in the exposition of this geometrical proof, but the way in which the method of exhaustion was
applied, and the parallelism between this and other applications of it, are clear. The first fragment shows that solid figures
made up of prisms were circumscribed and inscribed to the portion of the cylinder. The parallel triangular faces of these
prisms were perpendicular to GE in the figure of Prop. 13; they divided GE into equal portions of the requisite smallness; each
section of the portion of the cylinder by such a plane was a triangular face common to an inscribed and a circumscribed right
prism. The planes also produced prisms in the prism cut off by the same oblique plane as cuts off the portion of the cylinder
and standing on GD as base.

The number of parts into which the parallel planes divided GE was made great enough to secure that the circumscribed
figure exceeded the inscribed figure by less than a small assigned magnitude.

The second part of the proof began with the assumption that the portion of the cylinder is >  of the prism cut off; and this
was proved to be impossible, by means of the use of the auxiliary parabola and the proportion

MN : ML = MN2 : MO2

which are employed in Prop. 13.

We may supply the missing proof as follows*.



In the accompanying figure are represented (1) the first element-pnsm circumscribed to the portion of the cylinder, (2) two
element-prisms adjacent to the ordinate OM, of which that on the left is circumscubed and that on the right (equal to the other)
inscribed, (3) the corresponding element-prisms forming part of the prism cut off (CC′OEDD′) which is  of the original prism.

In the second figure are shown element-rectangles circumscribed and inscribed to the auxiliary parabola, which rectangles
correspond exactly to the circumscribed and inscribed element- prisms represented in the first figure (the length of OM is the
same in both figures, and the breadths of the element-rectangles are the same as the heights of the element-prisms); the
corresponding element-rectangles forming part of the rectangle GD are similarly shown.

For convenience we suppose that GE is divided into an even number of equal parts, so that GK contains an integral number
of these parts.

For the sake of brevity we will call each of the two element-prisms of which OM is an edge “el. prism (o)” and each of the
element-prisms of which MNN′ is a common face “el. prism (N)” Similarly we will use the corresponding abbreviations “el.
rect. (L)” and “el. rect. (N)” for the corresponding elements in relation to the auxiliary parabola as shown in the second figure.

Now it is easy to see that the figure made up of all the inscribed prisms is less than the figure made up of the circumscribed
prisms by twice the final circumscribed prism adjacent to FKt i.e. by twice “el. prism (N)”; and, as the height of this prism
may be made as small as we please by dividing GK into sufficiently small parts, it follows that inscribed and circumscribed
solid figures made up of element-prisms can be drawn differing by less than any assigned solid figure.

(1) Suppose, if possible, that
(portion of cylinder) >  (prism cut off),

or (prism cut off) <  (portion of cylinder).

Let (prism cut off) =  (portion of cylinder – X), say.



Construct circumscribed and inscribed figures made up of element-prisms, such that
(circumscr. fig.) – (inscr. fig.) < X.

Therefore (inscr. fig.) > (circumscr. fig. – X),
and a fortiori > (portion of cyl. – X).

It follows that
(prism cut off) <  (inscribed figure).

Considering now the element-prisms in the prism cut off and those in the inscribed figure respectively, we have

el. prism (N) : 

It follows that

(There are really two more prisms and rectangles in the first and third than there are in the second and fourth terms
respectively; but this makes no difference because the first and third terms may be multiplied by a common factor as n/(n − 2)
without affecting the truth of the proportion. Cf. the proposition from On Conoids and Spheroids quoted on p. 15 above.)

Therefore

(prism cut off) : (figure inscr. in portion o f cyl.) = (rect. GD) : (fig. inscr. in parabola).

But it was proved above that
(prism cut off) <  (fig. inscr. in portion of cyl.);

therefore (rect. GD) <  (fig. inscr. in parabola),
and, a fortiori,

(rect. GD) <  (parabolic segmt.):

which is impossible, since
(rect. GD) =  (parabolic segmt.).

Therefore

(portion of cyl.) is not greater than  (prism cut off).

(2) In the second lacuna must have come the beginning of the next reductio ad absurdum  demolishing the other possible
assumption that the portion of the cylinder is  of the prism cut off.

In this case our assumption is that
(prism cut off) >  (portion of cylinder);

and we circumscribe and inscribe figures made up of element-prisms, such that
(prism cut off) >  (fig. circumscr. about portion of cyl.).

We now consider the element-prisms in the prism cut off and in the circumscribed figure respectively, and the same arguent
as above gives

(prism cut off) : (fig. circumscr. about portion of cyl.) = (rect. GD) : (fig. circumscr. about parabola),

whence it follows that
(rect. GD) >  (fig. circumscribed about parabola), and a fortiori,

(rect. GD) >  (parabolic segment):

which is impossible, since



(rect. GD) =  (parabolic segmt.).

Therfore
(portion of cyl.) is not less than  (prism cut off).

But it was also proved that neither is it greater;
therefore

[Proposition 15.]

[This proposition, which is lost, would be the mechanical investigation of the second of the two special problems
mentioned in the preface to the treatise, namely that of the cubature of the figure included between two cylinders, each of which
is inscribed in one and the same cube so that its opposite bases are in two opposite faces of the cube and its surface touche the
other four faces.

Zeuthen has shown how the mechanical method can be applied to this case*.

In the accompanying figure VWYX is a section of the cube by a plane (that of the paper) passing through the axis BD of one
of the cylinders inscribed in the cube and parallel or two opposite faces.

The same plane gives the circle ABCD as the section of the other inscribed cylinder with axis perpendicular to the plane of
the paper and extending on each side of the plane to a distance equal to the radius of the circle or half the side of the cube.

AC is the diameter of the circle which is perpendicular to BD.

Join AB, AD and produce them to meet the tangent at C to the circle in E, F.

Then EC = CF = CA.

Let LG be the tangent at A, and complete the rectangle EFGL.

Draw straight lines from A to the four comers of the section in which the plane through BD perpendicular to AK cuts the
cube. These straight lines, if produced, will meet the plane of the face of the cube opposite to A in four points forming the four
comers of a square in that plane with sides equal to EF or double of the side of the cube, and we thus have a pyramid with A
for vertex and the latter square for base.

Complete the prism (parallelepiped) with the same base and height as the pyramid.

Draw in the parallelogram LF any straight line MN parallel to EF, and through MN draw a plane at right angles to AC. This
plane cuts—

(1) the solid included by the two cylinders in a square with side equal to OP,

(2) the prism in a square with side equal to MN, and



(3) the pyramid in a square with side equal to QR.

Produce CA to H, making HA equal to AC, and imagine HC to be the bar of a balance.

Now, as in Prop. 2, since MS = AC, QS = AS,

Also

Therefore the square with side equal to MN, in the place where it is, is in equilibrium about A with the squares with sides
equal to OP, QR respectively placed with their centres of gravity at H.

Proceeding in the same way with the square sections produced by other planes perpendicular to AC, we finally prove that
the prism, in the place where it is, is in equilibrium about A with the solid included by the two cylinders and the pyramid, both
placed with their centres of gravity at H.

Now the centre of gravity of the prism is at K.

Therefore HA : AK = (prism) : (solid + pyramid)
or 2 : 1 = (prism) : (solid +  prism).

Therefore 2 (solid) +  (prism) = (prism).

It follows that

There is no doubt that Archimedes proceeded to, and completed, the rigorous geometrical proof by the method of
exhaustion.

As observed by Prof. C. Juel (Zeuthen l.c.), the solid in the present proposition is made up of 8 pieces of cylinders of the
type of that treated in the preceding proposition. As however the two propositions are separately stated, there is no doubt that
Archimedes’ proofs of them were distinct.

In this case AC would be divided into a very large number of equal parts aild planes would be drawn through the points of
division perpendicular to AC. These planes cut the solid, and also the cube VY, in square sections. Thus we can inscribe and
circumscribe to the solid the requisite solid figures made up of element-prisms and differing by less than any assigned solid
magnitude; the prisms have square bases and their heights are the small segments of AC. The element-prism in the inscribed and
circumscribed figures which has the square equal to OP2 for base corresponds to an element-prism in the cube which has for
base a square with side equal to that of the cube; and as the ratio of the element-prisms is the ratio OS2 : BK2, we can use the
same auxiliary parabola, and work out the proof in exactly the same way, as in Prop. 14.]

* Hermes XLII. 1907, pp. 285 sq.
* Hermes XLII. 1907, pp. 243—297.
† Bibliotheca Mathematica VII3, 1906–7, pp. 321—363.
‡ Heronis Alexandrini opera, Vol III. pp. 80, 17; 130, 25.
§ Vide The Works of Archimedes, p.xxii.
* On the Sphere and Cylinder, Preface to Book I.
† The Thirteen Books of Euclid’s Elements, Vol. III. p. 368.
‡ Plutarch, De Comm. Not. adv. Stoicos XXXIX. 3.



* The parallelograms are apparently squares.
† i.e. squares.
* π ρì τοû ίρημένου σχήματος, in the singular. Possibly Archimedes may have thought of the case of the pyramid as being the more fundamental and as really

involving that of the cone. Or perhaps “fifure” may be intended for “type of figure.”
† Cf. Preface to Quadrature of Parabola.
* The problem of finding the centre of gravity of a cone is not solved in any extant work of Archimedes. It may have been solved either in a separate treaties, such as

the π ρì ξυγŵν, which is lost, or perhaps in a larger mechanical work of which the extant books On the Equilibrium of Planes formed only a part.
* i.e. the works on conics by Aristaeus and Euclid. Cf. the similar expression in On Conoids and Spheroids, Prop. 3, and Quadrature of Parabola, Prop. 3.
* The word governing τήν γ ωμ τρουμένην àπóδ ιξιν in the Greek text is τάξομ ν, a reading which seems to be doubtful and is certainly difficult to translate. Heiberg

translates as if τάξομ ν meant “we shall give lower down” or “later on,” but I agree with Th. Reinach (Revue générale des sciences pures et appliquées , 30 November
1907, p. 918) that it is questionable whether Archimedes would really have written out in full once more, as an appendix, a proof which, as he says, had already been
published (i.e. presumably in the Quadrature of a Parabola). τάξομ ν if correct, should apparently mean “we shall appoint,” “prescribe” or “assign.”

* That is to say, Archimedes originally solved the problem of finding the solid content of a sphere before that of finding its surface, and he inferred the result of the
latter problem from that of the former. Yet in On the Sphere and Cylinder  I. the surface is independently found (Prop. 33) and before the volume, which is found in
Prop. 34: another illustration of the fact that the order of propositions in the treatises of the Greek geometers as finally elaborated does not necessarily follow the order of
discovery.

* Cf. note on p. 15 above.
* Archimedes arrives at this result in a very roundabout way, seeing that it could have been obtained at once convertendo. Of. Euclid x. 14.
* The text has “triple” (τριπλσίαν) in the last line instead of “double.” As there is a considerable lacuna before the last few lines, a theorem about the centre of gravity

of a segment of a hyperboloid of revolution may have fallen out.
* Zeuthen in Bibliotlieca Mathematica VII3, 1906–7, pp. 352–3.
* It is right to mention that this has already been done by Th. Beinach in his version of the treatise (“Un Traité de Géométrie inédit d’Archimède” in Revue générale

des sciences pures et appliquées, 30 Nov. and 15 Dec. 1907); but 1 prefer my own statement of the proof.
* Zeuthen in Bibliotheca Mathematica VII3, 1906–7, pp. 356–7.
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