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the classical form

R. E. Hewitt1,†, P. W. Duck1 and A. J. Williams1

1School of Mathematics, University of Manchester, Manchester M13 9PL, UK

(Received 18 August 2016; revised 12 December 2016; accepted 27 April 2017;
first published online 7 June 2017)

This theoretical and numerical study presents three-dimensional boundary-layer
solutions for laminar incompressible flow adjacent to a semi-infinite flat plate, subject
to a uniform free-stream speed and injection through the plate surface. The novelty in
this case arises from a fully three-dimensional formulation, which also allows for slot
injection over a spanwise length scale comparable to the boundary-layer thickness.
This approach retains viscous effects in both the spanwise and transverse directions,
and effectively results in a parabolised Navier–Stokes system (sometimes referred to
as the ‘boundary-region equations’). Any injection profile can be described in this
approach, but we restrict attention to three-dimensional states driven by a finite-width
slot aligned with the flow direction and self-similar in their downstream development.
The classical two-dimensional states are known to only exist up to a critical (‘blow
off’) injection amplitude, but the three-dimensional solutions here appear possible for
any injection velocity. These new states take the form of low-speed streamwise-aligned
streaks whose geometry depends on the amplitude of injection and the spanwise width
of the injection slot; intriguingly, although very low wall shear is typically obtained,
streamwise flow reversal is not observed, however hard the blowing. Asymptotic
descriptions are provided in the limit of increasing slot width and fixed injection
velocity, which allow for classification of the solutions according to two bounding
injection rates.

Key words: boundary layer structure, high-speed flow

1. Introduction

It is well known that even low levels of suction/injection into a boundary layer
can have dramatic consequences in terms of the downstream distribution of skin
friction, stability properties of the layer and heat transfer. In some circumstances one
may wish to utilise injection to destabilise a boundary layer and provoke a turbulent
response, enhance mixing or to introduce a localised disturbance (e.g. Haidari &
Smith 1994). Injection is also central to the methods of film/transpiration cooling
of aerothermodynamic heat loads, with an injection layer used to ameliorate heat
transfer to the boundary (Gross et al. 1961; Goldstein 1971), or to introduce an
active injectant such as hydrogen into an oxygen stream, e.g. Liu & Libby (1971).

† Email address for correspondence: richard.e.hewitt@manchester.ac.uk
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In the context of wall injection, the canonical problem of a two-dimensional
flat-plate boundary layer has been addressed in some detail, both with and without
an external pressure gradient and in both the compressible and incompressible
formulations. The simplest formulation considers a uniform flow of speed U∗

∞
, with

a fluid of kinematic viscosity ν∗, and a downstream coordinate x∗, leading to a local
Reynolds number of Rex = U∗

∞
x∗/ν∗ = Re x, where x is a dimensionless downstream

coordinate and Re a global Reynolds number based on an ad hoc length scale
choice. In the incompressible limit, assuming a two-dimensional description with a
(self-similar) boundary-layer-scale injection velocity of K U∗

∞
Re−1/2

x , we obtain the
Blasius equation, which is parameterised by the dimensionless injection rate K through
the surface boundary condition. As the injection rate is increased, we encounter the
so called ‘blow off’ phenomena, where the entire self-similar boundary-layer solution
ceases to exist for K larger than a critical value of approximately 0.876, as presented
by Emmons & Leigh (1954) and discussed in, for example, Rosenhead (1963,
p. 243) and Neiland et al. (2008, p. 173). At this critical value a singular solution
is encountered with the wall shear and displacement thickness approaching zero and
infinity respectively.

The asymptotic behaviour of the two-dimensional steady similarity solution at
injection rates near to the critical value has been discussed by Kassoy (1970, 1971).
The structure of these solutions is rather intricate, with an inviscid near-wall response
separated from the outer irrotational flow by a displaced shear layer. The displacement
of the shear layer is found to be O(log(1/τ)Re−1/2) and the (dimensionless) shear
value, τ , satisfies a transcendental equation with respect to the perturbation about the
critical injection rate. If one replaces the self-similar spatial form of the injection
with a uniform injection rate, then a similar structure dominated by logarithmic terms
is found, but at a critical downstream location (Catherall, Stewartson & Williams
1965), associated with a steady separation of the boundary layer.

As discussed in the introduction of Kassoy (1971), a peculiarity of the self-similar
injection ‘blow off’ problem is that, in the presence of a favourable pressure gradient,
the singularity is removed and a solution exists for all K. Rather than a singular
‘blow off’, any small favourable pressure gradient instead leads to a shear layer that
is displaced further from the wall as the injection magnitude K is increased, the
asymptotic nature of which is discussed by Watson (1966) and Elliott (1968). This
apparent disparity between the sudden singular ‘blow off’ in the absence of a pressure
gradient and the gradual displacement for a favourable pressure gradient led to the
development of weakly interacting theories of injection. Kassoy (1971) followed by
Klemp & Acrivos (1972) both demonstrated that an interacting solution was possible
with an inner near-wall injection region of O(Re−1/3). This solution is valid for
K & 0.876, but there remains a singularity at the critical injection value (K ≈ 0.876),
where the wall shear is still zero. As a consequence the interacting theory predicts,
somewhat unexpectedly, that the shear at the boundary is non-monotonic, decreasing
with increasing injection rates for K . 0.876 and then increasing again at higher
injection rates with K & 0.876.

The precise details of the interacting flow at the critical injection rate K ≈ 0.876
were later clarified in the work of Kassoy (1974). The asymptotic structure
that describes the near-singular solution is easily disrupted, in particular as the
displacement grows, a weak associated favourable pressure gradient is induced
in the outer flow, which turns out to be enough to regularise the problem. This
allows for a non-singular weakly interacting structure, with a small (but finite) wall
shear of O(Re−1 log(Re)) when the injection is precisely at the critical value of the
non-interacting formulation.
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Injection into boundary layers: solutions beyond the classical form 619

In this work we address the same fundamental transpiration problem, but do not
restrict ourselves to a two-dimensional theory; instead we allow for injection over
a finite-spanwise length scale that is comparable to the boundary-layer thickness.
Our focus on short-spanwise scales is driven by recent experimental evidence that
injection over such short scales leads to novel behaviour, and in particular can in
some circumstances delay separation as described by, for example, Fernandez, Kumar
& Alvi (2013). Other experimental studies are highlighted by van Dommelen &
Yapalparvi (2014), who also give a theoretical analysis to demonstrate the surprising
result that a periodic arrangement of microjets can remove separation from a boundary
layer (albeit with weak wall curvature) by including short-scale spanwise effects.
Unlike van Dommelen & Yapalparvi (2014), our approach does not require wall
curvature and allows for transpiration at all streamwise locations (rather than a
localised microjet-like forcing), but we will allow this to be of finite-spanwise extent
rather than enforcing spanwise periodicity. Relaxing the assumption of periodicity
in the spanwise direction requires a careful consideration of the far-field conditions,
but also allows us to consider the evolution of the solutions for blowing through
increasingly wide slots, and how such states relate to the classical two-dimensional
solutions.

Rather than spatially marching the flow, we will seek self-similar solutions in the
streamwise direction, thus constructing a direct analogue of the classical transpiration
problem reviewed above. We will show that the complexities of the asymptotic
structure found in the classical two-dimensional theory are absent when short-scale
three-dimensional effects are allowed for. In particular, there is no critical ‘blow
off’ phenomena. In the sense that the ‘blow off’ is a simplified form of (steady)
separation, our results offer support to those of van Dommelen & Yapalparvi (2014)
regarding the role of short-scale effects acting to resist separation.

In the subsequent formulation we will employ the ‘boundary-region equations’
(Kemp 1951), which are in essence a parabolised version of the Navier–Stokes
equations. This approach assumes that spanwise length scales are comparable to
the transverse boundary-layer thickness, ensuring that diffusion in the cross-section
is retained in both directions, but the longer streamwise length scale leads to the
neglect of streamwise diffusion. Similar formulations have previously been employed
in high Reynolds number descriptions of (for example) corner boundary regions
(Dhanak & Duck 1997), wakes behind elongated roughness elements (Goldstein et al.
2016), flow near small-scale surface gaps (Hewitt & Duck 2014), the influence of
upstream vorticity on transition (Wundrow & Goldstein 2001) and the generation of
laminar streaks by free-stream vorticity (Ricco & Dilib 2010). The formulation of van
Dommelen & Yapalparvi (2014) is also equivalent if one considers the zero-curvature
limit of their equations, although in their case the short-scale spanwise forcing is
also assumed to be periodic, which simplifies the far-field behaviour compared to the
(finite-spanwise extent) our problem.

2. Formulation

To formulate the problem we assume that the flow adjacent to the plate is laminar,
steady and incompressible, and is to be described according to a dimensional Cartesian
coordinate system (x∗, y∗, z∗), as shown in figure 1. We will retain the notation of the
introduction, with a free-stream speed of U∗

∞
and kinematic viscosity ν∗. The plate

is defined by y∗ = 0, x∗ > 0, and x∗ is increasing in the streamwise direction with a
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620 R. E. Hewitt, P. W. Duck and A. J. Williams

Injection region with

FIGURE 1. An analogue of the classical boundary layer adjacent to a flat plate, with
leading edge at x∗ = 0 and subject to fluid injection at the surface. The classical ‘blow
off’ results (Kassoy 1970, 1971, 1974) are independent of z∗, whereas here we force
three-dimensionality directly by injection through a (narrow, symmetric) slot of spanwise
(half-) width

√
2x∗Re−1/2

x ζ0, in the large Rex limit. Of particular interest is the wide slot
limit ζ0� 1.

corresponding local Reynolds number Rex= x∗U∗
∞
/ν∗� 1. A non-dimensional solution

is sought in a rescaled coordinate system

(z∗, y∗)=
√

2x∗Re−1/2
x (ζ , η). (2.1a)

This ζ scale is central to the formulation and allows for spanwise scales that are
comparable to the boundary-layer thickness. For the velocity field, we introduce

u∗ =U∗
∞

U(ζ , η)+ · · · , (2.1b)
(v∗,w∗)=U∗

∞
Re−1/2

x (V(ζ , η)+ · · · ,W(ζ , η)+ · · ·), (2.1c)

whilst the dimensional pressure field is

p∗ = ρ∗U∗
∞

2
(Re−1/2

x p+ Re−1
x P(ζ , η)+ · · ·), (2.1d)

where ρ∗ is the constant fluid density. Here p is the classical pressure correction
obtained in the two-dimensional theory, but for these three-dimensional flows P is the
significant term, as it affects the leading-order solution.

In what follows attention is focused on transpiration through the plate surface of
the form

v∗(ζ , η= 0)=U∗
∞

Re−1/2
x Vtransp(ζ ). (2.2)

This is not a conceptual restriction of this formulation and more general x∗
dependencies can be handled by parabolic marching/development in the downstream
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Injection into boundary layers: solutions beyond the classical form 621

direction. The advantage of the choice (2.2) lies in a self-similar development with
x∗, leaving us to only solve in the cross-sectional plane spanned by ζ and η.

Applying a boundary-layer approximation, under the assumption that the local
Reynolds number Rex � 1, results in a system that retains viscous diffusion
in the cross-sectional (that is, constant x∗) plane and the spanwise/transverse
momentum equations are both affected by the pressure term P. It is preferable
to cross-differentiate and eliminate this pressure term, then employ a slight change
of the dependent variables via

V(ζ , η)= 1
√

2
(ηU(ζ , η)−Φ(ζ , η)), (2.3a)

W(ζ , η)= 1
√

2
(ζU(ζ , η)−Ψ (ζ , η)); (2.3b)

this leaves Φ and Ψ as the variables of interest. This slight reformulation is equivalent
to that found in (for example) Stewartson (1954) for the two-dimensional Falkner–
Skan problem or Pal & Rubin (1971) for three-dimensional flow along a corner.

The above formulation results in the boundary-region equations in the form:

2U =Φη +Ψζ , (2.4a)
Θ =Ψη −Φζ , (2.4b)

∇
2U =−ΦUη −ΨUζ , (2.4c)

∇
2Θ = 2[ζUUη − ηUUζ ] −ΦΘη −ΨΘζ − 2UΘ, (2.4d)

where ∇2 is the two-dimensional Laplacian in the plane spanned by η and ζ . Whilst
perhaps less intuitive than the primitive variable formulation, this system is well
known for its application to corner boundary-layer flows, see for example Pal &
Rubin (1971). It is advantageous to use this formulation because (2.4a) and (2.4b)
can be combined to give expressions for the Laplacian of Φ and Ψ . This yields a
system of the form ∇2Q= R(Q, ζ , η), where Q= (U, Φ, Ψ, Θ) and R is a nonlinear
function of the unknowns and position in the plane. This approach allows for a
relatively straightforward numerical discretisation scheme.

This system is to be solved subject to U → 1, Θ → 0, Ψ → ζ as η → ∞,
corresponding to a uniform external flow with no cross-flow. At ζ = 0 we assume
appropriate symmetry conditions whilst for large ζ the solution is the usual flat-plate
boundary layer. At the surface of the plate (η= 0), we require that U= 0, Ψ = 0 and
surface transpiration (2.2) leads to

Φ(ζ , η= 0)=−
√

2Vtransp(ζ ). (2.5a)

We will focus on cases where the transpiration is largely uniform and exists over a
finite-spanwise width, by taking

Vtransp(ζ )=
K

2
√

2
(1− tanh(γ (|ζ/ζ0| − 1))). (2.5b)

This gives an approximate top-hat shape to the transverse velocity profile at the
plate surface, with ζ0 defining the spanwise extent of the transpiration region on the
(2x∗ν∗/U∗

∞
)1/2 scale, γ defines the rapidity of the transition from transpiration to no

transpiration (and is introduced largely for numerical expediency) and K defines the
magnitude of the transpiration.
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Suction from the boundary layer is K< 0, whilst K> 0 is injection into the layer. In
what follows, we will take γ = 20 as a default parameter unless otherwise stated, and
focus our attention on injection (K > 0) rather than the more straightforward suction
case. We note that this parameterisation of the injection velocity is consistent with that
employed in the two-dimensional problem, as discussed at some length in the works
of Kassoy (1970, 1971, 1974) regarding ‘blow off’. It must be highlighted however
that the dimensional transpiration velocity, when scaled according to (2.1), includes a
multiplicative factor of 2−1/2, being U∗

∞
Re−1/2

x K/
√

2.

2.1. Numerical implementation
One may be tempted to solve (2.4) under the assumption that the flow returns to
the Blasius solution when sufficiently far from the injection region. Attempting this
approach shows that the decay towards the Blasius state in the far field is in general
algebraic and therefore requires very large domains. As a consequence, our numerical
method seeks to reduce the size of the computational domain by imposing far-field
boundary conditions that are consistent with the asymptotic decay towards the Blasius
state in the far field.

We can explicitly remove the Blasius base flow by making the substitution

U(ζ , η)=UB(η)+ Ũ(ζ̂ , η), (2.6a)

Φ(ζ , η)=ΦB(η)+ Φ̃(ζ̂ , η), (2.6b)

Ψ (ζ , η)= ζΨB(η)+ ζ0Ψ̃ (ζ̂ , η), (2.6c)

Θ(ζ , η)= ζΘB(η)+ ζ0Θ̃(ζ̂ , η), (2.6d)

into the governing system (2.4). Here the tilde quantities represent a (nonlinear)
perturbation that is driven purely by the presence of the injection slot and we employ
the rescaled coordinate ζ̂ = ζ/ζ0 to span the extent of the slot. In the absence
of injection, the tilde quantities are all zero, and the solution is simply UB = Φ

′

B,
ΨB =Φ

′

B, ΘB =Φ
′′

B, where (2.4) shows that ΦB satisfies the Blasius equation

Φ ′′′B +ΦBΦ
′′

B = 0, (2.7)

and the prime notation indicates differentiation with respect to η.
The decomposition (2.6) allows the far-field behaviour of (Ũ, Φ̃, Ψ̃ , Θ̃) to

be explicitly enforced as part of the numerical solution procedure. The far-field
asymptotic behaviour is discussed in detail in Hewitt & Duck (2014) and we only
present the main results here. It is sufficient here to note that for ζ � 1 and/or η� 1,
Φ̃ and Ψ̃ both satisfy the harmonic equation, leading to

Φ̃ ∼
Aη

ζ̂ 2 + η2
, Ψ̃ ∼

Aζ̂

ζ̂ 2 + η2
, (2.8a,b)

whilst Ũ and Θ̃ are both exponentially small. Here A is a constant that must be
determined as part of the global computation of (2.4) via the decomposition (2.6). If
A> 0 then the flow field has a net mass transport towards the centreline (η= ζ̂ = 0)
in the far field, whilst A< 0 corresponds to net outflow.

In classical boundary layers, algebraic decay into a free stream is typically not
allowed. This conclusion is drawn from an examination of the properties of harmonic
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Injection into boundary layers: solutions beyond the classical form 623

outer solutions, which would necessarily be singular at all points on approaching the
boundary (e.g. Brown & Stewartson 1965; Hewitt, Duck & Stow 2002). However,
these arguments do not apply to the three-dimensional solutions with short-spanwise
scales discussed herein. In our case (2.8), the vorticity still decays exponentially and
the outer Laplace problem is only singular along a line.

A second-order (finite-difference) method for the numerical solution of (2.4) subject
to the decomposition (2.6) is employed; this follows the method of Hewitt & Duck
(2014). The computational mesh is non-uniformly spaced in the ζ̂ , η plane to ensure
that more nodes are concentrated near the plate surface, within the injection region
(ζ̂ < 1) and at the edge of the injection region (ζ̂ = 1) where the injection velocity
changes rapidly to zero. At each nodal point the four unknowns (Ũ, Φ̃, Ψ̃ , Θ̃)
are stored. Newton iteration is used to determine the 4Nζ̂Nη + 1 unknowns, where
Nζ̂ and Nη are the number of nodes in the (ζ̂ , η) directions, and the additional
unknown is the mass flux coefficient denoted by A in (2.8). At each iteration, the
linear system is sparse and the inversion is achieved by use of the MUMPS library
(Amestoy, Duff & L’Excellent 2000); the number of degrees of freedom ranges up to
approximately 5.76× 106 depending up the strength of the injection flow. In general,
larger values of K or ζ0 require more degrees of freedom (larger Nζ̂ and Nη) and
a larger computational domain. For example, for K = 2.5, ζ0 = 16 our choices were
Nζ̂ =Nη = 1201 with a domain truncation of ζ̂ < 20 (i.e. ζ < 320) and η < 320.

3. Results
In the absence of any injection through the plate surface (K = 0) the solution

remains two-dimensional, and is provided by (2.7). Injection through the plate surface
is only over a finite-spanwise length scale parameterised by ζ0, as described by (2.5),
and therefore any non-zero K will necessarily induce a three-dimensional response.

In the classical two-dimensional theory (Neiland et al. 2008, p. 173), increasing
injection through the plate surface eventually leads to a detachment of the boundary
layer. This detachment occurs at a critical K ≈ 0.876 and is associated with a
vanishing of the streamwise shear on the plate, and a shear layer that becomes
infinitely displaced from the surface. Between this shear layer and the plate surface
there is no substantial streamwise motion. It is therefore a natural question to address
the relevance of this behaviour to our more general three-dimensional flow when
ζ0� 1. That is, to what extent (if any) do we recover the two-dimensional classical
results for injection over increasing slot widths, and is K ≈ 0.876 still a critical
injection speed at which the boundary layer detaches entirely from the surface?

3.1. Increasing injection slot width
On solving (2.4) subject to injection at the plate surface, K> 0, we find that the flow
can be characterised as one of three types, as the injection slot width ζ0 increases.
In the remainder of this section we will discuss the differences between these three
types of flow response with an emphasis on their physical features, then in § 4 we
will describe these regimes asymptotically for ζ0� 1.

In figure 2 the flow is shown for three values of the injection amplitude
K = 0.5, 1.5, 2.5 and a fixed slot width of ζ0 = 20. For this relatively large value of
ζ0 these three injection amplitudes show three distinct types of behaviour. In what
follows we classify these three types of response and identify the critical injection
amplitudes associated with each type.
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FIGURE 2. (Colour online) The three flow regimes observed for K > 0 (blowing) into
an otherwise two-dimensional boundary layer; only ζ > 0 is shown here with assumed
symmetry about ζ = 0. Results are shown for a wall transpiration (2.5), with ζ0 = 20,
γ = 20 and (a,b) K = 0.5 (c,d) K = 1.5 and (e, f ) K = 2.5. The left-hand column shows
contours of streamwise velocity U, whilst the right-hand column shows the perturbation
vorticity component ζ0Θ̃ from (2.6) together with the corresponding particle path lines in
the ζ–η plane.

3.1.1. Type I: weak injection (0<K <KI)
The streamwise shear evaluated at the plate surface remains non-zero in this regime,

ranging from the Blasius value far away from the injection slot (ζ̂� 1) to a minimum
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at the centreline of the injection region (ζ̂ = 0). There is a slight thickening of the
boundary layer on approaching ζ̂ = 0, but otherwise the injection flow does not
dominate the response. This is seen in figure 2(a,b), for K = 0.5 and ζ0 = 20, which
shows (a) the streamwise velocity U and (b) the (scaled perturbation) vorticity Θ̃;
both of these quantities are only influenced in the near-wall region.

The effects of wall transpiration in this case are mostly confined to the thin region
of vorticity adjacent to the plate surface, where η=O(1). This level of blowing is not
sufficient to push the layer away from the plate surface, but it does lead to a slow
variation of the layer’s properties over the long (ζ0� 1) length scale. Any blowing-
induced increase in the thickness of this layer near the plate means a reduction of the
streamwise mass flux, and this deficit must be compensated for by an increase in the
mass transferred to the bulk flow via V and W, as defined by (2.3). This displacement
induced flow is in addition to the extra mass contributed by the blowing through
the plate surface. In terms of the computational formulation, this means that as K
increases, so must the magnitude of A, as defined by (2.8).

This flow response is obtained for 0< K < KI , and we demonstrate in § 4.1 below
that KI ≈ 0.876, i.e. the same critical injection rate at which the two-dimensional
solution is ‘blown off’. At injection rates larger than KI we move instead to a
moderate injection regime in which the effects of blowing become more prominent.

3.1.2. Type II: moderate injection (KI <K <KII)
At values of the transpiration amplitude greater than KI but less than a further

critical value, which we label KII the flow response in the injection region (ζ̂ < 1)
changes. In the classical two-dimensional problem, there are no solutions for this rate
of injection. However, for the boundary-region equations, a solution is obtained, albeit
with very low shear at the plate surface near ζ = 0.

In this regime there is a vorticity component Θ̃ , which is displaced away from the
plate boundary (η= 0) and near ζ̂ = 0 a low-speed streak develops, within which U≈
0. These features can be seen in figure 2(c,d), where the low-speed streak is visible
in (c), with an associated displacement of vorticity away from the wall in (d). For the
type I solutions described above, the slight thickening of the layer near to ζ̂ = 0 does
not grow as the injection slot width ζ0 is increased. However, in this type II regime, a
widening slot width leads to an increasingly prominent low-speed streak. The presence
of this low-speed region leads to a reduction in the streamwise mass flux, which is
compensated for by an increased radial flow into the far field, as described by (2.8).

The low streamwise speeds within the streak are separated from the higher-speed
outer flow by a displaced shear layer, which appears to have approximately constant
curvature near to the centreline (ζ̂ = 0). The asymptotic theory presented below in
§ 4.2 points to KII ≈ 1.95, with the exact value determined in terms of the precise
spanwise form of the injection profile.

3.1.3. Type III: strong injection (K >KII)
At sufficiently large injection amplitudes K > KII , increasing the width of the

injection slot results in an even more prominent low-speed streak. An example of
this regime is shown in figure 2(e, f ) where a dominant large low-speed streak is
observed that is in fact wider than the injection slot width (which ends at ζ/ζ0 ≈ 1).
The low-speed region appears to be circular, with a radius of O(ζ0); we confirm
this scaling in a subsequent asymptotic description below. A shear layer delineates
the edge of this low-speed streak. Below this shear layer the streamwise velocity is

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

28
8

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 T

he
 U

ni
ve

rs
ity

 o
f M

an
ch

es
te

r 
Li

br
ar

y,
 o

n 
24

 M
ar

 2
01

9 
at

 1
6:

44
:2

0,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

https://doi.org/10.1017/jfm.2017.288
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


626 R. E. Hewitt, P. W. Duck and A. J. Williams

small (U ≈ 0), whilst above it free-stream conditions are found with U ≈ 1. There is
a non-zero vorticity perturbation associated with the shear layer, but it is not visible
on the contour scale shown in figure 2( f ).

In the absence of streamwise motion inside the streak, any mass transfer across the
plate surface must exit via the surrounding shear layer. As we will demonstrate in
§ 4.2, we are able to provide a solution for the mass transfer through the shear layer
as a function of its radius. By matching this mass flux through the shear layer (out of
the streak) to that entering the streak via the injection slot, we can predict the streak
radius.

4. Asymptotic descriptions for wide injection slots
Below we present asymptotic descriptions (guided by the numerical results of the

previous section) for each of the three nonlinear flow states for increasing injection
slot widths (ζ0 � 1). In this discussion we address weak and strong injection first,
leaving the (more complex) intermediate moderate injection case for last.

4.1. Type I: weak injection (K <KI)
Despite the presence of injection, a viscous layer persists across the injection slot
width, leading to an inner region that is spanned by η =O(1) and ζ =O(ζ0), where
ζ0 is the lateral extent of the injection region defined by (2.5). To leading order this
layer has no cross-flow. To describe this region we again use ζ̂ = ζ/ζ0, together with

U(ζ , η; ζ0)=U0(ζ̂ , η)+ · · · , Φ(ζ , η; ζ0)=Φ0(ζ̂ , η)+ · · · , (4.1a,b)

Ψ (ζ , η; ζ0)= ζ0ζ̂Ψ0(ζ̂ , η)+ · · · , Θ(ζ , η; ζ0)= ζ0ζ̂Θ0(ζ̂ , η)+ · · · . (4.1c,d)

In the absence of any cross-flow W ≈ 0, as defined by (2.3), a solution exists in the
form

(U0, Φ0, Ψ0, Θ0)= (UI, ΦI,UI,UIη), (4.2)

for which (2.4) reduces at leading order to

UI =ΦIη + ζ̂UI ζ̂ , (4.3a)

UIηη =−ΦIUIη − ζ̂UIUI ζ̂ . (4.3b)

If UI > 0 for all η > 0 this solution can be extended from ζ̂ � 1 towards ζ̂ = 0 by
parabolic marching, subject to the conditions

UI = 0, ΦI =Φtransp, on η= 0, (4.3c,d)

UI→ 1, as η→∞, (4.3e)

where the surface transpiration Φtransp is defined implicitly by (2.5). The starting state
for ζ̂ � 1 is simply the Blasius solution.

Figure 3 shows the shear distribution along the plate, for solutions of the ‘full’
system (2.4) with injection profiles given by (2.5) where γ = 20, ζ0 = 20, 40 and
K = 0.2, 0.6. For comparison, the leading order ζ0 � 1 prediction provided by
parabolically marching (4.3) is also shown. The full numerical data are consistent
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FIGURE 3. The shear distribution along the plate Uη(η = 0, ζ̂ ) for ζ0 = 20 (dashed) and
ζ0=40 (solid) for K=0.2 and K=0.6, as determined by solution of (2.4). For comparison
the shear distribution predicted by the parabolic system (4.3), shown as the thicker line.

with and approaching the ζ0 � 1 prediction, apart from within a decreasing inner
region around ζ̂ = 0. We will address this ζ̂ � 1 behaviour separately in appendix A,
where there is firm evidence that three-dimensional eigensolutions play a role in this
region.

In general, the parabolic solution terminates at ζ̂ = 0 with a solution that is
consistent with the classical two-dimensional states described in § 1, which only exist
for K . 0.876. Marching of (4.3) for K & 0.876 leads to a singular response at a
finite value of ζ̂ , associated with a zero of U0η(η= 0).

For η� 1, away from the parabolic layer, the far-field conditions provide

Φ0 ∼ η+ δB + δtransp(ζ̂ ), (4.4)

which is a statement regarding the vertical velocity induced in the outer flow due to
the presence of the parabolic layer. Here δB is the displacement associated with the
classical Blasius solution in the absence of transpiration (it is approximately −1.2).
The imposition of a wall transpiration over a finite-spanwise region also induces a
spanwise varying displacement that we denoted above as δtransp(ζ̂ ). If K = 0 then the
tilde quantities in (2.6) are zero and δtransp= 0, but for general values of K, δtransp 6= 0
and is determined by spanwise marching of the parabolic-layer equations.

We now consider an outer inviscid region spanned by η= ζ0η̂ and ζ = ζ0ζ̂ ; this is
an outer region of the boundary-region equations (2.4), and as such is O(x∗Re−1/2

x ζ0)

on the dimensional transverse and spanwise scales. In this region, we can look for the
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628 R. E. Hewitt, P. W. Duck and A. J. Williams

perturbation to an underlying Blasius state

Φ = ζ0η̂+ δB + φ(ζ̂ , η̂), (4.5)

where φ=O(1) in order to match with the δtransp(ζ̂ ) induced by the parabolic solution
and ζ0η̂+ δB is simply the outer limit of the Blasius solution. Numerical evidence from
the full solution suggests that both U and Θ remain o(ζ−2

0 ), which leaves a harmonic
problem for φ,

∇̂
2φ = 0, (4.6)

subject to

φ(ζ̂ , η̂= 0)= δtransp(ζ̂ ). (4.7)

This is effectively determining the outer flow from the vertical mass transport induced
in the parabolic layer by the presence of the surface transpiration.

The solution to the outer problem can now be given via a standard Green’s function
approach

φ(ζ̂ , η̂)=
1
π

∫
+∞

z=−∞

δtransp(z)η̂

η̂2 + (ζ̂ − z)2
dz. (4.8)

In the far field we know from (2.8) that

φ ∼
Aη

ζ 2 + η2
=

Âη̂

ζ̂ 2 + η̂2
, (4.9)

where A= ζ0Â; similar expressions are possible for the far-field contribution to the Ψ
component. Given this far-field behaviour, the total radial mass flux (or more strictly
because this is in the plane, an area flux) due to spanwise variation at infinity is Aπ,
whereas the flux from the parabolic layer induced by the surface injection is Mζ0,
where

M =
∫
∞

−∞

δtransp(ζ̂ ) dζ̂ . (4.10a)

Mass conservation therefore allows us to predict the coefficient A in (2.8) must be

A=
M
π
ζ0. (4.10b)

In figure 4 we show a comparison of the numerically computed values of A with
the asymptotic prediction provided by (4.10). For this comparison we perform the
parabolic marching of (4.3), from an initial state of a Blasius profile, to determine
δtransp via (4.4). This allows for computation of the transverse mass flux induced by
this viscous response via the integral definition of M in (4.10a). Excellent agreement
with the asymptotic description is found (confirming the linear dependency of A on
ζ0), but the approach fails at K=KI ≈ 0.876. It is also clear that the singular response
of the parabolic solution associated with a reversal of the cross-flow at the critical
injection rate of K ≈ 0.876 is strongly mitigated by finite-ζ0 effects.
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FIGURE 4. Numerically determined values (data points) of A/ζ0 for increasing injection
velocities K. Shown as a solid line is the asymptotic prediction, M/π, as determined from
(4.10a). The vertical line shows the critical value K =KI ≈ 0.876.

4.2. Type III: strong injection (K >KII)
In this regime there is a sizeable low-speed streak associated with injection velocities
larger than a critical value of KII; this value is determined as part of the asymptotic
description as ζ0→∞ given below. The flow field in this regime shares the qualitative
features of figure 2(e, f ), with the spatial extent of the streak becoming large as the
injection slot width (ζ0) is increased.

We seek to capture the details of this streak using the coordinates η̂ = η/ζ0 and
ζ̂ = ζ/ζ0, and the numerical evidence of § 3 suggests the following scalings:

U(ζ , η; ζ0)= o(ζ−1
0 )+ · · · , Φ(ζ , η; ζ0)=Φ

∗(ζ̂ , η̂)+ · · · , (4.11a,b)

Ψ (ζ , η; ζ0)=Ψ
∗(ζ̂ , η̂)+ · · · , Θ(ζ , η; ζ0)= ζ

−1
0 Θ∗(ζ̂ , η̂)+ · · · . (4.11c,d)

This leads to the following leading-order system within the streak:

Φ∗η̂ =−Ψ
∗

ζ̂
, (4.12a)

Θ∗ =Ψ ∗η̂ −Φ
∗

ζ̂
, (4.12b)

Φ∗Θ∗η̂ +Ψ
∗Θ∗

ζ̂
= 0. (4.12c)

We can usefully re-pose this problem in terms of a streamfunction

G(ζ , η)= ζ0G∗(ζ̂ , η̂)+ · · · , (4.13)
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such that
Ψ ∗ =−G∗η̂, Φ∗ =G∗

ζ̂
. (4.14)

This leads to the usual Poisson formulation for a two-dimensional, inviscid, but
rotational, incompressible flow, where Θ∗ is the vorticity. Using (2.3), U ≈ 0 implies
that (to leading order) W = G∗η̂/

√
2 is the spanwise velocity, whilst V =−G∗

ζ̂
/
√

2 is
the transverse velocity.

At the boundary, G∗(ζ̂ , η̂=0)=G∗w(ζ̂ ), where G∗w effectively defines the scaled mass
flux (in the plane, per unit distance downstream) through the injection slot, via

G∗w(ζ̂ )=−
√

2
∫ ζ̂

0
Vtransp dζ̂ . (4.15)

The streak exists within a large semi-circular region, of radius r= (η2
+ ζ 2)1/2= rs;

in terms of the scaled coordinates, this becomes r̂ = (η̂2
+ ζ̂ 2)1/2 = r̂s, where rs =

ζ0r̂s. Outside of the streak region (and of the circular shear layer discussed below)
the response is irrotational with U ≡ 1 and Θ ≡ 0 (to leading order), along with

Φ = ζ0η̂+
Aη̂

ζ0(η̂2 + ζ̂ 2)
+O(ζ−2

0 ), Ψ = ζ0ζ̂ +
Aζ̂

ζ0(η̂2 + ζ̂ 2)
+O(ζ−2

0 ), (4.16a,b)

which describe the underlying far-field (uniform flow) solution, plus the algebraic
decay (with amplitude A) of the induced three-dimensional response. In order to
match with the solution inside the streak, we must have that both Φ and Ψ are o(ζ0),
which leads to

A=−ζ 2
0 r̂2

s . (4.17)

This partially confirms the semi-circular shape of the streak, although we still require
the connecting solution through the shear layer.

In the shear layer at the edge of the streak, we employ a new radial coordinate
R = r − rs, and angle θ , measured from the plate. Assuming all flow quantities are
O(1) in this region, we obtain

2U =ΦR sin θ +ΨR cos θ, (4.18a)
Θ =ΨR sin θ −ΦR cos θ, (4.18b)

URR =−ΦUR sin θ −ΨUR cos θ, (4.18c)
ΘRR =−ΦΘR sin θ −ΨΘR cos θ − 2ΘU. (4.18d)

The final equation would have contained two (solitary) O(ζ0) terms, but these cancel
if the streak is semi-circular in form (confirming our earlier assertion). Boundary
conditions for the semi-circular shear layer are U → 0, Θ → 0 as R→ −∞, and
U→ 1, Θ→ 0 along with Φ→ 2R sin θ and Ψ → 2R cos θ as R→∞.

On reformulating in terms of the radial flow contribution in the cross-sectional plane,

F=Φ sin θ +Ψ cos θ, (4.19a)

we obtain

FRRR + FFRR = 0, (4.19b)
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to be solved subject to F(0)= 0 (associated with an arbitrary O(1) translation of the
origin), F′(∞)→ 2 as R→∞ and F′(−∞)→ 0 as R→−∞. This is equivalent to the
standard planar mixing-layer solution, albeit in terms of a radial coordinate, see for
example Schlichting & Gersten (2003, p. 667). Numerical solution of this free shear
layer indicates that F(−∞)≈−1.238.

This leaves the vorticity term Θ to be determined, together with the individual
contributions of Φ and Ψ to the now known F. The Θ equation is then

ΘR + FΘ = const. (4.19c)

Evaluation in the far field shows the constant to be zero, and a solution is therefore

Θ =C1FRR, (4.19d)

where C1 is a constant.
The function F is the radial velocity contribution from Φ and Ψ (albeit with F< 0

corresponding to radial outflow). In terms of the (scaled) streamfunction describing
the flow inside the streak, this same radial component is

1
r̂
∂G∗

∂θ
. (4.20)

Matching with the radial flow through the shear layer, the solution in the streak
requires the condition

1
r̂s

∂G∗

∂θ

∣∣∣∣
r̂=r̂s

=−F(−∞), (4.21)

or, as F(−∞) is independent of θ :

G∗|r̂=r̂s = const.− r̂sF(−∞)θ. (4.22)

For a symmetric injection with no mass flux across the centreline ζ̂ = 0 (θ =π/2)

G∗(r̂s, θ)=−r̂sF(−∞)(θ −π/2). (4.23)

Evaluation on the plate (θ = 0) and requiring that the mass flux through the injection
slot matches with that through the shear layer at the outer extent of the streak,
requires

r̂sF(−∞)
π

2
=G∗w(ζ̂ = r̂s). (4.24)

Failure of this condition would mean a discontinuity in the streamfunction at O(ζ0)
as the semi-circular shear layer connects with the plate boundary layer.

The constraint (4.24) is a condition for the (scaled) radius of the streak, r̂s. For
sufficiently large values of γ , (2.5b) is well approximated by −Kζ̂ /

√
2 for ζ̂ < 1 and

−K/
√

2 for ζ̂ > 1. Hence (4.15) yields G∗w(ζ̂ = r̂s) ≈ −K, on assuming that r̂s > 1,
leaving

rs = ζ0r̂s =−
2Kζ0

πF(−∞)
≈ 0.514Kζ0. (4.25a)
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FIGURE 5. Numerically determined values of A (open circles and right-hand scale) and
rs (solid circles and left-hand scale) in the strong injection regime (with K= 2.5>KII) as
the injection slot width ζ0 increases. These numerical results are rescaled according to the
leading-order asymptotic behaviour, and compared with the ζ0� 1 predictions of (4.25);
as shown by the solid lines.

Hence (4.17) provides

A∼−
4K2ζ 2

0

π2F(−∞)2
≈−0.264K2ζ 2

0 . (4.25b)

This argument only applies if r̂s > 1. If r̂s < 1, then G∗w(ζ̂ = r̂s)≈−Kr̂s, in which
case the radius of the streak is eliminated from the mass flux constraint (4.24), and
the condition cannot (in general) be satisfied. So r̂s = rs/ζ0 = 1 serves to identify the
critical injection velocity (KII) for the development of this flow regime. Setting r̂s= 1
and K =KII in (4.25a) provides

KII =−
πF(−∞)

2
≈ 1.95. (4.26)

In figure 5 we show the predicted unscaled streak radius (rs) and far-field constant
A for increasing widths of the injection slot (ζ0) with a fixed injection velocity K>KII .
The agreement is clear, although there is evidence of a higher-order O(1) contribution
to both rs and A that we have made no attempt to determine asymptotically. For this
comparison we have chosen to measure the streak radius by determining the value of
rs such that U(ζ = 0, η = rs) = 0.5, being the mid-way value between the U ≈ 0 in
the streak and U≈ 1 in the far field. As a final point, it is worth noting that the large
magnitude of A = O(ζ 2

0 ) in this regime makes calculations challenging, in particular
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FIGURE 6. Contours of U= 0.5 in the rescaled coordinate system (ζ/rs, η/rs), where rs is
chosen such that U(ζ = 0, η= rs)= 0.5; shown here for ζ0= 10 and K= 1, 1.2, 1.4, 1.6, 1.8
increasing in the direction of the arrow shown. The dashed line is the predicted circular
shear-layer location for the type III solutions that exist for K > 1.95 and large ζ0.

the imposition of the conditions (2.8) is crucial. As A increases, a larger computational
domain is required to accurately reproduce the leading-order (algebraic) asymptotic
behaviour in the far field. For figure 5 (for example), we use a domain of size ζ̂ < 20,
η < 320 with 1201× 1201 nodes for ζ0 = 16. Less challenging parameter values can
be resolved with smaller domains and fewer nodes.

4.3. Type II: moderate injection (KI <K <KII)
This regime provides a transition between states of type I and III, and is therefore
expected to share some of the characteristics of both, but as a consequence has
a rather more complex structure, leading to a less complete asymptotic (global)
description.

The dominant feature at moderate injection velocities is a low-speed streak, as in
the strong injection regime, but in this case the streak is not semi-circular. Numerical
evidence, as shown in figure 2(c) suggests that the streak’s edge is approximately
circular only over a finite range of angle rather than extending all the way to the plate
boundary. The shear layer deviates from being circular at an angle that is dependent
on the injection rate K. Figure 6 shows the contour U(ζ , η) = 0.5 (as a reasonable
proxy for the shear-layer location that bounds the low-speed streak) for an injection
slot width of ζ0= 10 and injection rates of K = 1, 1.2, . . . , 1.8. As can be seen from
the figure, as K is increased towards the critical value of KII≈1.95 the circular portion
of the shear layer increases until it approximates the quarter circle predicted in the
leading-order asymptotic description of the type III regime.
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FIGURE 7. Values of Ψ/ζ measured in the injection region for ζ0 = 40 and K = 0.2
(type I) and K = 1.2 (type II). In regions where U ≈ 1, Ψ/ζ ≈ 1 corresponds to no
cross-flow velocity, with W≈ 0 as defined by (2.3). (a) Two profiles of Ψ/ζ are presented
at ζ = 0.7ζ0, for K= 0.2, 1.2 showing an attached layer at the plate in both cases. (b) The
spanwise variation of Ψ/ζ is shown at η=8, showing weak cross-flow velocity for K=0.2
but a non-trivial external cross-flow for K = 1.2.

In this type II regime, the size of the streak is smaller than the width of the
injection region (that is, rs < ζ0). Outside of the streak but still near to the plate,
the flow has the characteristics of an attached η = O(1) viscous layer similar to
that found in the type I states, as described by (4.3). An example profile of Ψ in
this layer adjacent to the plate (but outside the streak) is shown in figure 7(a) at
ζ = 0.7ζ0 (with ζ0 = 40) for K = 1.2 (type II) and for comparison we also show
K = 0.2 (type I). Away from the injection region, (ζ � ζ0) the solution in this layer
decays to the Blasius state, but how this layer connects to the displaced shear layer
in the injection region (ζ < ζ0) is non-trivial.

As noted in our discussion of the type I states, the parabolic on-plate layer (4.3)
when marched in the spanwise coordinate to the centreline ζ = 0 recovers the classical
two-dimensional results described in § 1. Therefore when K > KI (as is the case in
this type II regime) there is no such terminating solution at ζ = 0 and (4.3) breaks
down with a singularity in displacement thickness at a finite spanwise location. It is
tempting to assume that the displaced shear layer and the layer adjacent to the plate
connect via this steady separation, but there is little evidence to support this view in
the full numerical results. Furthermore, the solution of (4.3) assumes that the far-field
(η� 1) condition is Ψ0→ 1, which is the condition for no cross-flow at O(ζ0) above
this layer. This is true for type I solutions, but the displacement associated with the
streak makes this assumption invalid in type II states.

Figure 7(a) shows the profile for Ψ (ζ = 0.7ζ0, η)/ζ (which is Ψ0(ζ̂ = 0.7, η) in
(4.3) to leading order) for ζ0 = 40 and K = 0.2, 1.2. For K = 0.2, the far-field value
is approximately unity as expected for this type I state, whereas there is clearly
a significant difference from unity for the type II state of K = 1.2. In both cases
U ≈ 1 away from the plate, so this deviation of Ψ/ζ from unity is indicative of the
importance of cross-flow at the edge of this layer in the type II regime. This is also
confirmed in figure 7(b), which shows Ψ/ζ at a fixed value of η= 8.
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A solution to the parabolic problem (4.3) is therefore still relevant to the region
outside the streak but adjacent to the plate in this case, but a more general external
condition of Ψ0→Ψ∞(ζ̂ ) is more appropriate (rather than Ψ0→ 1 as applied for type
I solutions). This distribution of cross-flow velocity, Ψ∞, will be a function of the
streak size and shape. Similarly the streak size and shape will be undetermined until
the mass flux into it from the parabolic layer can be determined. Combining these
observations suggests that an interactive approach (albeit within the confines of the
boundary-region equations) is required, which couples all three regions (the viscous
layer on the plate, the streak and the region outside both) together at leading order;
this in itself would be a challenging computation.

5. Discussion
We have presented three-dimensional self-similar solutions to the ‘boundary-region

equations’. These solutions correspond to injection through a slot of dimensional
width ζ0(2x∗ν∗/U∗

∞
)1/2 and dimensional injection velocity K(U∗

∞
ν∗/x∗)1/2, where x∗

is the distance from the leading edge of a flat plate, placed in a fluid of vanishing
kinematic viscosity ν∗ with a free-stream speed of U∗

∞
. Outside the injection slot

the plate is treated as impermeable, and we thus recover the classical injection-free
solutions near the plate in the far field. This choice of spatial dependence for the
injection velocity and the slot width allows for solutions that are self-similar in the
downstream coordinate. A more general downstream variations could be tackled in a
similar manner, by parabolic marching in the downstream direction.

For the two-dimensional case it is known that the self-similar states cease to exist
for K & 0.876, at which point the boundary layer is ‘blown off’ the plate surface.
To continue these two-dimensional states beyond this value requires an interacting
formulation outside the traditional boundary-layer equations. However, in the context
of the boundary-region equations considered herein, solutions continue to exist with
no evidence of a critical ‘blow off’ event.

When the width of the injection slot (ζ0) becomes large, three distinct flow regimes
develop delineated by the magnitude of the blowing. The main (global) features
of these three regimes have been described asymptotically, with good quantitative
agreement for the bulk flow features. If the blowing parameter K . 0.876 then in
the injection region we recover a three-dimensional analogue of the corresponding
classical two-dimensional state. This state can be determined by parabolic marching
from the far field in the spanwise direction into the injection region. However, even on
approaching the centreline of the injection slot we typically do not fully recover the
quantitative results of the classical approach, owing to a spatial instability (discussed
in appendix A), which dominates close to the centreline.

At larger values of the injection parameter, K, solutions develop a low-speed streak
at the centreline of the injection region. For increasing K the size of the streak
increases, until for K & 1.95 the streak becomes semi-circular and of a radius that is
greater than the width of the injection slot. In this regime the streak is of dimensional
radius 0.514Kζ0(2x∗ν∗/U∗

∞
)1/2.

The asymptotic descriptions of the low-speed streak that we have provided are
robust to changes in the details of the injection profile, in the sense that any different
choice for (2.5) could be approached in the same manner. In physical terms, the
asymptotic development for large injection widths is dominated by the role of mass
flux through the plate and a requirement for this to be balanced by the flux across
the shear layer that bounds the streak. For example, the type III states balance the
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influx (into the streak) of Kζ0 with the outflux of F(−∞)πrs/2, where F(−∞) is
the (constant) transpiration rate into the shear layer, (4.19b), and πrs/2 is simply
the outer circumference of the streak (in the quarter plane η, ζ > 0). This condition
determines the streak radius rs, as described by (4.25a). A change of the injection
profile from (2.5) to something more complicated would not alter this argument. For
example, an alternative transpiration profile with zero mean flux may be considered,
with injection of magnitude K for ζ ∈ [0, ζ0] then suction of the same magnitude for
ζ ∈ [ζ0, 2ζ0]. The same asymptotic argument applies with little change and predicts
that the streak radius is now rs = 4Kζ0/(F(−∞)π+ 2K). Note that in this case, the
rescaled radius r̂s = rs/ζ0 no longer increases without bound for increasing K and
instead becomes saturated at r̂s = 2; that is, the streak size becomes bounded by the
end of the suction region.

The recent work of van Dommelen & Yapalparvi (2014) examined two-dimensional
boundary layers influenced by weak curvature. They showed that a Goldstein
singularity (Goldstein 1948) could be regularised by the inclusion of a spanwise-
periodic blowing region. Key to their work was the inclusion of short-scale spanwise
effects, motivated by the experimental use of microjets, and achieved through a
curvature affected version of the boundary-region equations. Wall curvature ensured
that the blowing region induced a (Görtler) vortex, which in some cases can persist
downstream to the location at which separation would be found in the absence of
blowing. The imposition of spanwise periodicity is important in the separation context
of van Dommelen & Yapalparvi (2014), because allowing the flow to return to being
two-dimensional in the far field (ζ � 1) will recover the singularity in that region.
Furthermore in the presence of spanwise diffusion, a singularity in the far field
means that parabolic marching must terminate at all spanwise locations. Our focus
is the self-similar ‘blow off’ singularity rather than inhibiting separation. We have
therefore removed the requirement for curvature, addressed a uniform external flow
(Blasius), extended the blowing region to be at all streamwise locations, and relaxed
the spanwise-periodic nature of the blowing to being an isolated region. Nevertheless,
our results support those of van Dommelen & Yapalparvi (2014) because they too
remain unseparated, in the sense that there is no singularity.

The classical ‘blow off’ problem is only loosely related to the steady separation
found in the analogous streamwise-developing problem, see for example Catherall
et al. (1965), but our results show that short-scale spanwise diffusion can remove
the singularity present in the two-dimensional approach. Our results show significant
regions of virtually stagnant streamwise flow; such states were found to have very low
values of wall shear for both large spanwise-width blowing regions and large blowing
rates. In this regard, we conclude by noting that more complex streak-like structures
are possible for strong blowing at fixed injection widths. In figure 8 we repeat the
measures employed in figure 2, but this time for fixed modest injection width ζ0 = 1
and increasing injection amplitude K = 8, 16, 32, for the pairs of figures (a,b), (c,d)
and (e, f ) respectively. In the classical literature this is the ‘massive blowing’ or ‘blow
hard’ (Cole & Aroesty 1968) limit, and again we see no evidence of a critical ‘blow
off’, but rather a streak that is largely of O(1) (in the ζ -scale) width and of increasing
length in the transverse direction (η). The exception is the uppermost portion of the
streak, which is associated with a strong and localised patch of vorticity, as measured
by the contours of the perturbation vorticity term Θ̃ . We have made no attempt at
providing an asymptotic description for K � 1, but numerical results suggest that
the height of the streak increases approximately linearly with K whilst there is some
evidence of a slow growth in the size of the vorticity patch at the top of the streak.
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FIGURE 8. (Colour online) The behaviour for large injection velocities (increasing K) over
a fixed slot (half-)width that is comparable to the two-dimensional Blasius boundary-layer
thickness. Results are shown for a wall transpiration (2.5), with ζ0 = 1, γ = 20 and (a,b)
K= 8 (c,d) K= 16 and (e, f ) K= 32. The left-hand column shows contours of streamwise
velocity U, whilst the right-hand column shows the perturbation vorticity component
ζ0Θ̃ from (2.6) together with the corresponding particle path lines in the ζ -η plane. As
specified in the key, only a subrange is displayed for contours of Θ̃ , to avoid the large
contribution from the edge of the injection slot at ζ̂ = 1, η= 0.

Again there is no evidence of (streamwise) flow reversal and increased blowing
appears to be related directly to very small (but still positive) shear at the base of
the streak.
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Appendix A. The role of spatial eigenmodes for ζ̂ � 1

Figure 3 shows a comparison of the (streamwise) shear distributions on the plate
for ζ0 = 20, 40 and K = 0.2, 0.6 < KI , which is in the weak injection regime. For
increasing ζ0 there is good quantitative evidence of an approach to the leading-order
(ζ0 � 1) asymptotic theory provided by the parabolic layer (4.3). But there remains
a marked deviation away from the predicted behaviour for small values of ζ̂ . This
feature can be observed in figure 3 as a rapid drop in the wall shear values for ζ̂ .0.2
when compared to the asymptotic prediction.

The physical origin of this behaviour can be clarified by allowing for the spatial
development of a weak cross-flow on approaching the centreline (ζ̂ = 0). To achieve
this we again look for a solution to (2.4) in the form of (4.1). In § 4.1 we sought
solutions with no cross-flow, which required U0=Ψ0 and Θ0=U0η in (4.1). However,
here we consider the spatial development of a weak cross-flow, of O(ε) say, by
modifying (4.2) as follows:

U0 =UI(ζ̂ , η)+ εu(ζ̂ , η), (A 1)

Φ0 =ΦI(ζ̂ , η)+ εϕ(ζ̂ , η), (A 2)

Ψ0 =UI(ζ̂ , η)+ εψ(ζ̂ , η), (A 3)

Θ0 =UIη(ζ̂ , η)+ εϑ(ζ̂ , η). (A 4)

If ε = 0, then we recover (4.3) and the solution of § 4.1, which has no cross-flow
velocity. However, if u 6=ψ the O(ε) perturbations will in general have an associated
cross-flow.

For ε�1, a linearised system can be easily obtained for (u, ϕ,ψ,ϑ), and for ζ̂�1,
solutions exist in the form

(u(ζ̂ , η), ϕ(ζ̂ , η), ψ(ζ̂ , η), ϑ(ζ̂ , η))= ζ̂ λ(u0(η), ϕ0(η), ψ0(η), ϑ0(η)). (A 5)

This yields an eigenvalue problem for λ = λr + iλi, and clearly if λr < 0 we expect
growth of this perturbation as ζ̂ → 0. In practice this growth is not unbounded, but
its presence points to a need to reintroduce spanwise diffusive effects near to the
centreline, even for large injection slot widths.

We have solved the eigenvalue problem for λ over a range of K via a standard finite-
difference formulation together with an application of the QZ algorithm. This shows
that for K &−0.45, there is a single eigenvalue with λr < 0, and the cross-flow-free
solution obtained from (4.3) is susceptible to the growth of these modes in a relatively
small region around the centreline ζ̂ = 0.
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